Skip to content

Class swarmauri_base.evaluator_pools.EvaluatorPoolBase.EvaluatorPoolBase

swarmauri_base.evaluator_pools.EvaluatorPoolBase.EvaluatorPoolBase

EvaluatorPoolBase(**kwargs)

Bases: IEvaluatorPool, ComponentBase

Thread-safe evaluator-pool base class with registry, dispatch and aggregation.

Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
40
41
42
43
44
45
46
47
def __init__(self, **kwargs: Any):
    super().__init__(**kwargs)
    self.evaluators = {}
    self.lock = threading.RLock()
    self.executor = None
    self.aggregation_func = (
        lambda scores: sum(scores) / len(scores) if scores else 0.0
    )

resource class-attribute instance-attribute

resource = EVALUATOR_POOL.value

model_config class-attribute instance-attribute

model_config = {'arbitrary_types_allowed': True}

evaluators class-attribute instance-attribute

evaluators = {}

lock class-attribute instance-attribute

lock = RLock()

executor class-attribute instance-attribute

executor = None

aggregation_func class-attribute instance-attribute

aggregation_func = (
    lambda scores: sum(scores) / len(scores)
    if scores
    else 0.0
)

type class-attribute instance-attribute

type = 'ComponentBase'

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

initialize

initialize()
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
49
50
51
52
53
54
55
def initialize(self) -> None:
    try:
        self.executor = futures.ThreadPoolExecutor(max_workers=10)
        logger.info("EvaluatorPool initialised with thread-pool executor")
    except Exception as e:
        logger.exception("Initialisation failed")
        raise RuntimeError(f"Failed to initialise evaluator pool: {e}") from e

shutdown

shutdown()
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
57
58
59
60
61
62
63
64
65
66
67
def shutdown(self) -> None:
    try:
        if self.executor:
            self.executor.shutdown(wait=True)
            self.executor = None
        with self.lock:
            self.evaluators.clear()
        logger.info("EvaluatorPool shut down")
    except Exception as e:
        logger.exception("Shutdown failed")
        raise RuntimeError(f"Failed to shut down evaluator pool: {e}") from e

add_evaluator

add_evaluator(evaluator, name=None)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
72
73
74
75
76
77
78
79
80
81
82
def add_evaluator(self, evaluator: IEvaluate, name: Optional[str] = None) -> str:
    if not isinstance(evaluator, IEvaluate):
        raise TypeError("Evaluator must implement IEvaluate")

    name = name or f"evaluator_{len(self.evaluators) + 1}"
    with self.lock:
        if name in self.evaluators:
            raise ValueError(f"Evaluator '{name}' already exists")
        self.evaluators[name] = evaluator
    logger.debug("Added evaluator '%s'", name)
    return name

remove_evaluator

remove_evaluator(name)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
84
85
86
87
88
89
def remove_evaluator(self, name: str) -> bool:
    with self.lock:
        removed = self.evaluators.pop(name, None) is not None
    if removed:
        logger.debug("Removed evaluator '%s'", name)
    return removed

get_evaluator

get_evaluator(name)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
91
92
93
def get_evaluator(self, name: str) -> Optional[IEvaluate]:
    with self.lock:
        return self.evaluators.get(name)

get_evaluator_names

get_evaluator_names()
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
95
96
97
def get_evaluator_names(self) -> List[str]:
    with self.lock:
        return list(self.evaluators.keys())

get_evaluator_count

get_evaluator_count()
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
 99
100
101
def get_evaluator_count(self) -> int:
    with self.lock:
        return len(self.evaluators)

evaluate

evaluate(programs, **kwargs)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
106
107
108
109
110
111
112
113
def evaluate(self, programs: Sequence[P], **kwargs) -> Sequence[IEvalResult]:
    try:
        processed = self.pre_process(programs)
        results = self._dispatch(processed)
        return self.post_process(results)
    except Exception as e:
        logger.exception("evaluate() failed")
        raise RuntimeError(f"Failed to evaluate programs: {e}") from e

evaluate_async async

evaluate_async(programs, **kwargs)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
115
116
117
118
119
120
121
async def evaluate_async(
    self, programs: Sequence[P], **kwargs
) -> Sequence[IEvalResult]:
    loop = asyncio.get_event_loop()
    return await loop.run_in_executor(
        self.executor, partial(self.evaluate, programs, **kwargs)
    )

aggregate

aggregate(scores)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
165
166
167
168
def aggregate(self, scores: Sequence[float]) -> float:
    if not scores:
        raise ValueError("Cannot aggregate an empty score list")
    return self.aggregation_func(list(scores))

set_aggregation_function

set_aggregation_function(func)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
170
171
172
173
174
175
176
177
178
179
def set_aggregation_function(
    self, func: Callable[[Sequence[float]], float]
) -> None:
    if not callable(func):
        raise TypeError("Aggregation function must be callable")
    # sanity-check signature
    result = func([0.5, 0.5])
    if not isinstance(result, (int, float)):
        raise TypeError("Aggregation function must return a numeric value")
    self.aggregation_func = func

pre_process

pre_process(programs)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
194
195
def pre_process(self, programs: Sequence[P]) -> Sequence[P]:
    return programs

post_process

post_process(results)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
197
198
def post_process(self, results: Sequence[IEvalResult]) -> Sequence[IEvalResult]:
    return results

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger