Bases: IEvaluatorPool
, ComponentBase
Thread-safe evaluator-pool base class with registry, dispatch and aggregation.
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self.evaluators = {}
self.lock = threading.RLock()
self.executor = None
self.aggregation_func = (
lambda scores: sum(scores) / len(scores) if scores else 0.0
)
|
resource
class-attribute
instance-attribute
model_config
class-attribute
instance-attribute
model_config = {'arbitrary_types_allowed': True}
evaluators
class-attribute
instance-attribute
lock
class-attribute
instance-attribute
executor
class-attribute
instance-attribute
aggregation_func
class-attribute
instance-attribute
aggregation_func = (
lambda scores: sum(scores) / len(scores)
if scores
else 0.0
)
type
class-attribute
instance-attribute
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
owners
class-attribute
instance-attribute
host
class-attribute
instance-attribute
default_logger
class-attribute
logger
class-attribute
instance-attribute
name
class-attribute
instance-attribute
version
class-attribute
instance-attribute
initialize
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def initialize(self) -> None:
try:
self.executor = futures.ThreadPoolExecutor(max_workers=10)
logger.info("EvaluatorPool initialised with thread-pool executor")
except Exception as e:
logger.exception("Initialisation failed")
raise RuntimeError(f"Failed to initialise evaluator pool: {e}") from e
|
shutdown
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
57
58
59
60
61
62
63
64
65
66
67 | def shutdown(self) -> None:
try:
if self.executor:
self.executor.shutdown(wait=True)
self.executor = None
with self.lock:
self.evaluators.clear()
logger.info("EvaluatorPool shut down")
except Exception as e:
logger.exception("Shutdown failed")
raise RuntimeError(f"Failed to shut down evaluator pool: {e}") from e
|
add_evaluator
add_evaluator(evaluator, name=None)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
72
73
74
75
76
77
78
79
80
81
82 | def add_evaluator(self, evaluator: IEvaluate, name: Optional[str] = None) -> str:
if not isinstance(evaluator, IEvaluate):
raise TypeError("Evaluator must implement IEvaluate")
name = name or f"evaluator_{len(self.evaluators) + 1}"
with self.lock:
if name in self.evaluators:
raise ValueError(f"Evaluator '{name}' already exists")
self.evaluators[name] = evaluator
logger.debug("Added evaluator '%s'", name)
return name
|
remove_evaluator
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def remove_evaluator(self, name: str) -> bool:
with self.lock:
removed = self.evaluators.pop(name, None) is not None
if removed:
logger.debug("Removed evaluator '%s'", name)
return removed
|
get_evaluator
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def get_evaluator(self, name: str) -> Optional[IEvaluate]:
with self.lock:
return self.evaluators.get(name)
|
get_evaluator_names
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def get_evaluator_names(self) -> List[str]:
with self.lock:
return list(self.evaluators.keys())
|
get_evaluator_count
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def get_evaluator_count(self) -> int:
with self.lock:
return len(self.evaluators)
|
evaluate
evaluate(programs, **kwargs)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
106
107
108
109
110
111
112
113 | def evaluate(self, programs: Sequence[P], **kwargs) -> Sequence[IEvalResult]:
try:
processed = self.pre_process(programs)
results = self._dispatch(processed)
return self.post_process(results)
except Exception as e:
logger.exception("evaluate() failed")
raise RuntimeError(f"Failed to evaluate programs: {e}") from e
|
evaluate_async
async
evaluate_async(programs, **kwargs)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
115
116
117
118
119
120
121 | async def evaluate_async(
self, programs: Sequence[P], **kwargs
) -> Sequence[IEvalResult]:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
self.executor, partial(self.evaluate, programs, **kwargs)
)
|
aggregate
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def aggregate(self, scores: Sequence[float]) -> float:
if not scores:
raise ValueError("Cannot aggregate an empty score list")
return self.aggregation_func(list(scores))
|
set_aggregation_function
set_aggregation_function(func)
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
170
171
172
173
174
175
176
177
178
179 | def set_aggregation_function(
self, func: Callable[[Sequence[float]], float]
) -> None:
if not callable(func):
raise TypeError("Aggregation function must be callable")
# sanity-check signature
result = func([0.5, 0.5])
if not isinstance(result, (int, float)):
raise TypeError("Aggregation function must return a numeric value")
self.aggregation_func = func
|
pre_process
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def pre_process(self, programs: Sequence[P]) -> Sequence[P]:
return programs
|
post_process
Source code in swarmauri_base/evaluator_pools/EvaluatorPoolBase.py
| def post_process(self, results: Sequence[IEvalResult]) -> Sequence[IEvalResult]:
return results
|
register_model
classmethod
Decorator to register a base model in the unified registry.
RETURNS |
DESCRIPTION |
Callable
|
A decorator function that registers the model class.
TYPE:
Callable[[Type[BaseModel]], Type[BaseModel]]
|
Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585 | @classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
"""
Decorator to register a base model in the unified registry.
Returns:
Callable: A decorator function that registers the model class.
"""
def decorator(model_cls: Type[BaseModel]):
"""Register ``model_cls`` as a base model."""
model_name = model_cls.__name__
if model_name in cls._registry:
glogger.warning(
"Model '%s' is already registered; skipping duplicate.", model_name
)
return model_cls
cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
glogger.debug("Registered base model '%s'.", model_name)
DynamicBase._recreate_models()
return model_cls
return decorator
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER |
DESCRIPTION |
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
are used.
TYPE:
Optional[Union[Type[T], List[Type[T]]]]
DEFAULT:
None
|
type_name
|
An optional custom type name for the subtype.
TYPE:
Optional[str]
DEFAULT:
None
|
RETURNS |
DESCRIPTION |
Callable
|
A decorator function that registers the subtype.
TYPE:
Callable[[Type[DynamicBase]], Type[DynamicBase]]
|
Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654 | @classmethod
def register_type(
cls,
resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
"""
Decorator to register a subtype under one or more base models in the unified registry.
Parameters:
resource_type (Optional[Union[Type[T], List[Type[T]]]]):
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
are used.
type_name (Optional[str]): An optional custom type name for the subtype.
Returns:
Callable: A decorator function that registers the subtype.
"""
def decorator(subclass: Type["DynamicBase"]):
"""Register ``subclass`` as a subtype."""
if resource_type is None:
resource_types = [
base for base in subclass.__bases__ if base is not cls
]
elif not isinstance(resource_type, list):
resource_types = [resource_type]
else:
resource_types = resource_type
for rt in resource_types:
if not issubclass(subclass, rt):
raise TypeError(
f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
)
final_type_name = type_name or getattr(
subclass, "_type", subclass.__name__
)
base_model_name = rt.__name__
if base_model_name not in cls._registry:
cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
glogger.debug(
"Created new registry entry for base model '%s'.",
base_model_name,
)
subtypes_dict = cls._registry[base_model_name]["subtypes"]
if final_type_name in subtypes_dict:
glogger.warning(
"Type '%s' already exists under '%s'; skipping duplicate.",
final_type_name,
base_model_name,
)
continue
subtypes_dict[final_type_name] = subclass
glogger.debug(
"Registered '%s' as '%s' under '%s'.",
subclass.__name__,
final_type_name,
base_model_name,
)
DynamicBase._recreate_models()
return subclass
return decorator
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24 | @classmethod
def model_validate_toml(cls, toml_data: str):
"""Validate a model from a TOML string."""
try:
# Parse TOML into a Python dictionary
toml_content = tomllib.loads(toml_data)
# Convert the dictionary to JSON and validate using Pydantic
return cls.model_validate_json(json.dumps(toml_content))
except tomllib.TOMLDecodeError as e:
raise ValueError(f"Invalid TOML data: {e}")
except ValidationError as e:
raise ValueError(f"Validation failed: {e}")
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
"""Return a TOML representation of the model."""
if fields_to_exclude is None:
fields_to_exclude = []
# Load the JSON string into a Python dictionary
json_data = json.loads(self.model_dump_json())
# Function to recursively remove specific keys and handle api_key placeholders
def process_fields(data, fields_to_exclude):
"""Recursively filter fields and apply placeholders."""
if isinstance(data, dict):
return {
key: (
api_key_placeholder
if key == "api_key" and api_key_placeholder is not None
else process_fields(value, fields_to_exclude)
)
for key, value in data.items()
if key not in fields_to_exclude
}
elif isinstance(data, list):
return [process_fields(item, fields_to_exclude) for item in data]
else:
return data
# Filter the JSON data
filtered_data = process_fields(json_data, fields_to_exclude)
# Convert the filtered data into TOML
return toml.dumps(filtered_data)
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23 | @classmethod
def model_validate_yaml(cls, yaml_data: str):
"""Validate a model from a YAML string."""
try:
# Parse YAML into a Python dictionary
yaml_content = yaml.safe_load(yaml_data)
# Convert the dictionary to JSON and validate using Pydantic
return cls.model_validate_json(json.dumps(yaml_content))
except yaml.YAMLError as e:
raise ValueError(f"Invalid YAML data: {e}")
except ValidationError as e:
raise ValueError(f"Validation failed: {e}")
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
"""Return a YAML representation of the model."""
if fields_to_exclude is None:
fields_to_exclude = []
# Load the JSON string into a Python dictionary
json_data = json.loads(self.model_dump_json())
# Function to recursively remove specific keys and handle api_key placeholders
def process_fields(data, fields_to_exclude):
"""Recursively filter fields and apply placeholders."""
if isinstance(data, dict):
return {
key: (
api_key_placeholder
if key == "api_key" and api_key_placeholder is not None
else process_fields(value, fields_to_exclude)
)
for key, value in data.items()
if key not in fields_to_exclude
}
elif isinstance(data, list):
return [process_fields(item, fields_to_exclude) for item in data]
else:
return data
# Filter the JSON data
filtered_data = process_fields(json_data, fields_to_exclude)
# Convert the filtered data into YAML using safe mode
return yaml.safe_dump(filtered_data, default_flow_style=False)
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
| def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
"""Assign a logger instance after model initialization."""
# Directly assign the provided FullUnion[LoggerBase] or fallback to the
# class-level default.
self.logger = self.logger or logger or self.default_logger
|