Skip to content

Class swarmauri_base.matrices.MatrixBase.MatrixBase

swarmauri_base.matrices.MatrixBase.MatrixBase

Bases: IMatrix, ComponentBase

Base class for matrix operations.

Provides abstract implementations for matrix operations including addition, subtraction, multiplication, division, and other common matrix functions. This class serves as a foundation for concrete matrix implementations.

Attributes

resource : Optional[str] The resource type of this component, defaults to MATRIX

resource class-attribute instance-attribute

resource = Field(default=MATRIX.value)

shape property

shape

Get the shape of the matrix.

Returns

Tuple[int, int] The dimensions of the matrix as (rows, columns)

Raises

NotImplementedError This property must be implemented by subclasses

dtype property

dtype

Get the data type of the matrix elements.

Returns

type The data type of the elements

Raises

NotImplementedError This property must be implemented by subclasses

type class-attribute instance-attribute

type = 'ComponentBase'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

reshape

reshape(shape)

Reshape the matrix to the specified dimensions.

Parameters

shape : Tuple[int, int] The new dimensions as (rows, columns)

Returns

IMatrix A reshaped matrix

Raises

NotImplementedError This method must be implemented by subclasses

Source code in swarmauri_base/matrices/MatrixBase.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def reshape(self, shape: Tuple[int, int]) -> "IMatrix":
    """
    Reshape the matrix to the specified dimensions.

    Parameters
    ----------
    shape : Tuple[int, int]
        The new dimensions as (rows, columns)

    Returns
    -------
    IMatrix
        A reshaped matrix

    Raises
    ------
    NotImplementedError
        This method must be implemented by subclasses
    """
    raise NotImplementedError("reshape must be implemented by a concrete subclass")

tolist

tolist()

Convert the matrix to a nested list.

Returns

List[List[T]] A list of lists representing the matrix

Raises

NotImplementedError This method must be implemented by subclasses

Source code in swarmauri_base/matrices/MatrixBase.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def tolist(self) -> List[List[T]]:
    """
    Convert the matrix to a nested list.

    Returns
    -------
    List[List[T]]
        A list of lists representing the matrix

    Raises
    ------
    NotImplementedError
        This method must be implemented by subclasses
    """
    raise NotImplementedError("tolist must be implemented by a concrete subclass")

row

row(index)

Get a specific row of the matrix.

Parameters

index : int The row index

Returns

IVector The specified row as a vector

Raises

NotImplementedError This method must be implemented by subclasses

Source code in swarmauri_base/matrices/MatrixBase.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def row(self, index: int) -> IVector:
    """
    Get a specific row of the matrix.

    Parameters
    ----------
    index : int
        The row index

    Returns
    -------
    IVector
        The specified row as a vector

    Raises
    ------
    NotImplementedError
        This method must be implemented by subclasses
    """
    raise NotImplementedError("row must be implemented by a concrete subclass")

column

column(index)

Get a specific column of the matrix.

Parameters

index : int The column index

Returns

IVector The specified column as a vector

Raises

NotImplementedError This method must be implemented by subclasses

Source code in swarmauri_base/matrices/MatrixBase.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def column(self, index: int) -> IVector:
    """
    Get a specific column of the matrix.

    Parameters
    ----------
    index : int
        The column index

    Returns
    -------
    IVector
        The specified column as a vector

    Raises
    ------
    NotImplementedError
        This method must be implemented by subclasses
    """
    raise NotImplementedError("column must be implemented by a concrete subclass")

transpose

transpose()

Transpose the matrix.

Returns

IMatrix The transposed matrix

Raises

NotImplementedError This method must be implemented by subclasses

Source code in swarmauri_base/matrices/MatrixBase.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def transpose(self) -> "IMatrix":
    """
    Transpose the matrix.

    Returns
    -------
    IMatrix
        The transposed matrix

    Raises
    ------
    NotImplementedError
        This method must be implemented by subclasses
    """
    raise NotImplementedError(
        "transpose must be implemented by a concrete subclass"
    )

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger