Bases: VectorStoreSaveLoadMixin
, VectorStoreRetrieveMixin
, VectorStoreBase
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 | def __init__(self, **kwargs):
super().__init__(**kwargs)
self._embedder = Doc2VecEmbedding(vector_size=self.embedding_dimension)
# Initialize Redis client using class attributes
self.connect()
# Setup Redis Search index
vector_field = VectorField(
"embedding",
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": self.embedding_dimension,
"DISTANCE_METRIC": "COSINE",
},
)
text_field = TextField("content")
try:
self._redis_client.ft(self.index_name).info()
print(f"Index '{self.index_name}' exists.")
except Exception:
print(f"Index '{self.index_name}' does not exist. Creating index...")
schema = (text_field, vector_field)
definition = IndexDefinition(prefix=["doc:"], index_type=IndexType.HASH)
self._redis_client.ft(self.index_name).create_index(
fields=schema, definition=definition
)
print(f"Index '{self.index_name}' created successfully.")
|
type
class-attribute
instance-attribute
type = 'RedisVectorStore'
index_name
class-attribute
instance-attribute
index_name = 'documents_index'
embedding_dimension
class-attribute
instance-attribute
embedding_dimension = 8000
redis_host
class-attribute
instance-attribute
redis_port
class-attribute
instance-attribute
redis_password
class-attribute
instance-attribute
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
owners
class-attribute
instance-attribute
host
class-attribute
instance-attribute
default_logger
class-attribute
logger
class-attribute
instance-attribute
name
class-attribute
instance-attribute
resource
class-attribute
instance-attribute
version
class-attribute
instance-attribute
documents
class-attribute
instance-attribute
connect
Establishes a connection to the Redis server using class attributes.
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86 | def connect(self) -> None:
"""
Establishes a connection to the Redis server using class attributes.
"""
try:
self._redis_client = redis.Redis(
host=self.redis_host,
port=self.redis_port,
password=self.redis_password,
decode_responses=False, # For binary data
)
# Test the connection
self._redis_client.ping()
print("Connected to Redis successfully.")
except Exception as e:
print(f"Failed to connect to Redis: {e}")
raise
|
disconnect
Disconnects from the Redis server.
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
| def disconnect(self) -> None:
"""
Disconnects from the Redis server.
"""
if self._redis_client:
self._redis_client.close()
self._redis_client = None
print("Disconnected from Redis.")
|
add_document
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124 | def add_document(self, document: Document) -> None:
doc = document
pipeline = self._redis_client.pipeline()
# Embed the document content
embedding = self._embedder.fit_transform([doc.content])[0]
if isinstance(embedding, Vector):
embedding = embedding.value
metadata = doc.metadata
# print("METADATA ::::::::::::::::::::", metadata)
doc_key = self._doc_key(doc.id)
# print("DOC KEY ::::::::::::::::::::", doc_key)
pipeline.hset(
doc_key,
mapping={
"content": doc.content,
"metadata": json.dumps(metadata), # Store metadata as JSON
"embedding": np.array(
embedding, dtype=np.float32
).tobytes(), # Convert embedding values to bytes
},
)
pipeline.execute()
|
add_documents
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147 | def add_documents(self, documents: List[Document]) -> None:
pipeline = self._redis_client.pipeline()
for doc in documents:
if not doc.content:
continue
# Embed the document content
embedding = self._embedder.fit_transform([doc.content])[0]
if isinstance(embedding, Vector):
embedding = embedding.value
metadata = {doc.metadata}
doc_key = self._doc_key(doc.id)
pipeline.hset(
doc_key,
mapping={
"content": doc.content,
"metadata": json.dumps(metadata),
"embedding": np.array(embedding, dtype=np.float32).tobytes(),
},
)
pipeline.execute()
|
get_document
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168 | def get_document(self, id: str) -> Union[Document, None]:
doc_key = self._doc_key(id)
data = self._redis_client.hgetall(doc_key)
if not data:
return None
metadata_raw = data.get(b"metadata", b"{}").decode("utf-8")
metadata = json.loads(metadata_raw)
content = data.get(b"content", b"").decode("utf-8")
# print("METAAAAAAA ::::::::::::", metadata)
embedding_bytes = data.get(b"embedding")
if embedding_bytes:
embedding = Vector(
value=np.frombuffer(embedding_bytes, dtype=np.float32).tolist()
)
else:
embedding = None
return Document(id=id, content=content, metadata=metadata, embedding=embedding)
|
get_all_documents
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196 | def get_all_documents(self) -> List[Document]:
cursor = "0"
documents = []
while cursor != 0:
cursor, keys = self._redis_client.scan(
cursor=cursor, match="doc:*", count=1000
)
for key in keys:
data = self._redis_client.hgetall(key)
if not data:
continue
doc_id = key.decode("utf-8").split("doc:")[1]
metadata_raw = data.get(b"metadata", b"{}").decode("utf-8")
metadata = json.loads(metadata_raw)
content = data.get(b"content", b"").decode("utf-8")
embedding_bytes = data.get(b"embedding")
if embedding_bytes:
embedding = Vector(
value=np.frombuffer(embedding_bytes, dtype=np.float32).tolist()
)
else:
embedding = None
document = Document(
id=doc_id, content=content, metadata=metadata, embedding=embedding
)
documents.append(document)
return documents
|
delete_document
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
| def delete_document(self, id: str) -> None:
doc_key = self._doc_key(id)
self._redis_client.delete(doc_key)
|
update_document
update_document(document)
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
| def update_document(self, document: Document) -> None:
doc_key = self._doc_key(document.id)
if not self._redis_client.exists(doc_key):
raise ValueError(f"Document with id {document.id} does not exist.")
# Update the document by re-adding it
self.add_documents([document])
|
cosine_similarity
cosine_similarity(vec1, vec2)
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
209
210
211
212
213
214
215 | def cosine_similarity(self, vec1, vec2):
dot_product = np.dot(vec1, vec2)
norm_vec1 = np.linalg.norm(vec1)
norm_vec2 = np.linalg.norm(vec2)
if norm_vec1 == 0 or norm_vec2 == 0:
return 0
return dot_product / (norm_vec1 * norm_vec2)
|
retrieve
Source code in swarmauri_vectorstore_redis/RedisVectorStore.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236 | def retrieve(self, query: str, top_k: int = 5) -> List[Document]:
query_vector = self._embedder.infer_vector(query)
all_documents = self.get_all_documents()
# print("ALL DOCUMENTS ::::::::::::::::::::", all_documents[:10])
similarities = []
for doc in all_documents:
if doc.embedding is not None:
doc_vector = doc.embedding
# print("DOC VECTOR ::::::::::::::::::::", doc_vector.value[:10])
similarity = self.cosine_similarity(
query_vector.value, doc_vector.value
)
similarities.append((doc, similarity))
similarities.sort(key=lambda x: x[1], reverse=True)
# print("SIMILARITIES ::::::::::::::::::::", similarities[:10])
top_documents = [doc for doc, _ in similarities[:top_k]]
# print(f"Found {len(top_documents)} similar documents.")
return top_documents
|
register_model
classmethod
Decorator to register a base model in the unified registry.
RETURNS |
DESCRIPTION |
Callable
|
A decorator function that registers the model class.
TYPE:
Callable[[Type[BaseModel]], Type[BaseModel]]
|
Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585 | @classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
"""
Decorator to register a base model in the unified registry.
Returns:
Callable: A decorator function that registers the model class.
"""
def decorator(model_cls: Type[BaseModel]):
"""Register ``model_cls`` as a base model."""
model_name = model_cls.__name__
if model_name in cls._registry:
glogger.warning(
"Model '%s' is already registered; skipping duplicate.", model_name
)
return model_cls
cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
glogger.debug("Registered base model '%s'.", model_name)
DynamicBase._recreate_models()
return model_cls
return decorator
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER |
DESCRIPTION |
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
are used.
TYPE:
Optional[Union[Type[T], List[Type[T]]]]
DEFAULT:
None
|
type_name
|
An optional custom type name for the subtype.
TYPE:
Optional[str]
DEFAULT:
None
|
RETURNS |
DESCRIPTION |
Callable
|
A decorator function that registers the subtype.
TYPE:
Callable[[Type[DynamicBase]], Type[DynamicBase]]
|
Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654 | @classmethod
def register_type(
cls,
resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
"""
Decorator to register a subtype under one or more base models in the unified registry.
Parameters:
resource_type (Optional[Union[Type[T], List[Type[T]]]]):
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
are used.
type_name (Optional[str]): An optional custom type name for the subtype.
Returns:
Callable: A decorator function that registers the subtype.
"""
def decorator(subclass: Type["DynamicBase"]):
"""Register ``subclass`` as a subtype."""
if resource_type is None:
resource_types = [
base for base in subclass.__bases__ if base is not cls
]
elif not isinstance(resource_type, list):
resource_types = [resource_type]
else:
resource_types = resource_type
for rt in resource_types:
if not issubclass(subclass, rt):
raise TypeError(
f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
)
final_type_name = type_name or getattr(
subclass, "_type", subclass.__name__
)
base_model_name = rt.__name__
if base_model_name not in cls._registry:
cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
glogger.debug(
"Created new registry entry for base model '%s'.",
base_model_name,
)
subtypes_dict = cls._registry[base_model_name]["subtypes"]
if final_type_name in subtypes_dict:
glogger.warning(
"Type '%s' already exists under '%s'; skipping duplicate.",
final_type_name,
base_model_name,
)
continue
subtypes_dict[final_type_name] = subclass
glogger.debug(
"Registered '%s' as '%s' under '%s'.",
subclass.__name__,
final_type_name,
base_model_name,
)
DynamicBase._recreate_models()
return subclass
return decorator
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24 | @classmethod
def model_validate_toml(cls, toml_data: str):
"""Validate a model from a TOML string."""
try:
# Parse TOML into a Python dictionary
toml_content = tomllib.loads(toml_data)
# Convert the dictionary to JSON and validate using Pydantic
return cls.model_validate_json(json.dumps(toml_content))
except tomllib.TOMLDecodeError as e:
raise ValueError(f"Invalid TOML data: {e}")
except ValidationError as e:
raise ValueError(f"Validation failed: {e}")
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
"""Return a TOML representation of the model."""
if fields_to_exclude is None:
fields_to_exclude = []
# Load the JSON string into a Python dictionary
json_data = json.loads(self.model_dump_json())
# Function to recursively remove specific keys and handle api_key placeholders
def process_fields(data, fields_to_exclude):
"""Recursively filter fields and apply placeholders."""
if isinstance(data, dict):
return {
key: (
api_key_placeholder
if key == "api_key" and api_key_placeholder is not None
else process_fields(value, fields_to_exclude)
)
for key, value in data.items()
if key not in fields_to_exclude
}
elif isinstance(data, list):
return [process_fields(item, fields_to_exclude) for item in data]
else:
return data
# Filter the JSON data
filtered_data = process_fields(json_data, fields_to_exclude)
# Convert the filtered data into TOML
return toml.dumps(filtered_data)
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23 | @classmethod
def model_validate_yaml(cls, yaml_data: str):
"""Validate a model from a YAML string."""
try:
# Parse YAML into a Python dictionary
yaml_content = yaml.safe_load(yaml_data)
# Convert the dictionary to JSON and validate using Pydantic
return cls.model_validate_json(json.dumps(yaml_content))
except yaml.YAMLError as e:
raise ValueError(f"Invalid YAML data: {e}")
except ValidationError as e:
raise ValueError(f"Validation failed: {e}")
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
"""Return a YAML representation of the model."""
if fields_to_exclude is None:
fields_to_exclude = []
# Load the JSON string into a Python dictionary
json_data = json.loads(self.model_dump_json())
# Function to recursively remove specific keys and handle api_key placeholders
def process_fields(data, fields_to_exclude):
"""Recursively filter fields and apply placeholders."""
if isinstance(data, dict):
return {
key: (
api_key_placeholder
if key == "api_key" and api_key_placeholder is not None
else process_fields(value, fields_to_exclude)
)
for key, value in data.items()
if key not in fields_to_exclude
}
elif isinstance(data, list):
return [process_fields(item, fields_to_exclude) for item in data]
else:
return data
# Filter the JSON data
filtered_data = process_fields(json_data, fields_to_exclude)
# Convert the filtered data into YAML using safe mode
return yaml.safe_dump(filtered_data, default_flow_style=False)
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
| def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
"""Assign a logger instance after model initialization."""
# Directly assign the provided FullUnion[LoggerBase] or fallback to the
# class-level default.
self.logger = self.logger or logger or self.default_logger
|
clear_documents
Deletes all documents from the vector store
Source code in swarmauri_base/vector_stores/VectorStoreBase.py
| def clear_documents(self) -> None:
"""
Deletes all documents from the vector store
"""
self.documents = []
|
document_count
Source code in swarmauri_base/vector_stores/VectorStoreBase.py
| def document_count(self):
return len(self.documents)
|
document_dumps
Placeholder
Source code in swarmauri_base/vector_stores/VectorStoreBase.py
| def document_dumps(self) -> str:
"""
Placeholder
"""
return json.dumps([each.to_dict() for each in self.documents])
|
document_dump
Placeholder
Source code in swarmauri_base/vector_stores/VectorStoreBase.py
110
111
112
113
114
115
116
117
118
119
120 | def document_dump(self, file_path: str) -> None:
"""
Placeholder
"""
with open(file_path, "w", encoding="utf-8") as f:
json.dump(
[each.to_dict() for each in self.documents],
f,
ensure_ascii=False,
indent=4,
)
|
document_loads
document_loads(json_data)
Placeholder
Source code in swarmauri_base/vector_stores/VectorStoreBase.py
122
123
124
125
126
127
128 | def document_loads(self, json_data: str) -> None:
"""
Placeholder
"""
self.documents = [
globals()[each["type"]].from_dict(each) for each in json.loads(json_data)
]
|
document_load
Placeholder
Source code in swarmauri_base/vector_stores/VectorStoreBase.py
130
131
132
133
134
135
136
137 | def document_load(self, file_path: str) -> None:
"""
Placeholder
"""
with open(file_path, "r", encoding="utf-8"):
self.documents = [
globals()[each["type"]].from_dict(each) for each in json.load(file_path)
]
|
save_store
save_store(directory_path)
Saves both the vectorizer's model and the documents.
Source code in swarmauri_base/vector_stores/VectorStoreSaveLoadMixin.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | def save_store(self, directory_path: str) -> None:
"""
Saves both the vectorizer's model and the documents.
"""
# Ensure the directory exists
if not os.path.exists(directory_path):
os.makedirs(directory_path)
# Save the vectorizer model
model_path = os.path.join(directory_path, "embedding_model")
self._vectorizer.save_model(model_path)
# Save documents
documents_path = os.path.join(directory_path, "documents.json")
with open(documents_path, "w", encoding="utf-8") as f:
json.dump(
[each.to_dict() for each in self.documents],
f,
ensure_ascii=False,
indent=4,
)
|
load_store
load_store(directory_path)
Loads both the vectorizer's model and the documents.
Source code in swarmauri_base/vector_stores/VectorStoreSaveLoadMixin.py
38
39
40
41
42
43
44
45
46
47
48
49 | def load_store(self, directory_path: str) -> None:
"""
Loads both the vectorizer's model and the documents.
"""
# Load the vectorizer model
model_path = os.path.join(directory_path, "embedding_model")
self.vectorizer.load_model(model_path)
# Load documents
documents_path = os.path.join(directory_path, "documents.json")
with open(documents_path, "r", encoding="utf-8") as f:
self.documents = [self._load_document(each) for each in json.load(f)]
|
save_parts
save_parts(directory_path, chunk_size=10485760)
Splits the file into parts if it's too large and saves those parts individually.
Source code in swarmauri_base/vector_stores/VectorStoreSaveLoadMixin.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 | def save_parts(self, directory_path: str, chunk_size: int = 10485760) -> None:
"""
Splits the file into parts if it's too large and saves those parts individually.
"""
file_number = 1
model_path = os.path.join(directory_path, "embedding_model")
parts_directory = os.path.join(directory_path, "parts")
if not os.path.exists(parts_directory):
os.makedirs(parts_directory)
with open(f"{model_path}/model.safetensors", "rb") as f:
chunk = f.read(chunk_size)
while chunk:
with open(
f"{parts_directory}/model.safetensors.part{file_number:03}", "wb"
) as chunk_file:
chunk_file.write(chunk)
file_number += 1
chunk = f.read(chunk_size)
# Split the documents into parts and save them
os.path.join(directory_path, "documents")
self._split_json_file(directory_path, chunk_size=chunk_size)
|
load_parts
load_parts(directory_path, file_pattern='*.part*')
Combines file parts from a directory back into a single file and loads it.
Source code in swarmauri_base/vector_stores/VectorStoreSaveLoadMixin.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150 | def load_parts(self, directory_path: str, file_pattern: str = "*.part*") -> None:
"""
Combines file parts from a directory back into a single file and loads it.
"""
model_path = os.path.join(directory_path, "embedding_model")
parts_directory = os.path.join(directory_path, "parts")
output_file_path = os.path.join(model_path, "model.safetensors")
parts = sorted(glob.glob(os.path.join(parts_directory, file_pattern)))
with open(output_file_path, "wb") as output_file:
for part in parts:
with open(part, "rb") as file_part:
output_file.write(file_part.read())
# Load the combined_model now
model_path = os.path.join(directory_path, "embedding_model")
self._vectorizer.load_model(model_path)
# Load document files
self._load_documents(directory_path)
|