Skip to content

Class swarmauri_standard.agents.RagAgent.RagAgent

swarmauri_standard.agents.RagAgent.RagAgent

Bases: AgentRetrieveMixin, AgentVectorStoreMixin, AgentSystemContextMixin, AgentConversationMixin, AgentBase

RagAgent (Retriever-And-Generator Agent) extends DocumentAgentBase, specialized in retrieving documents based on input queries and generating responses.

llm instance-attribute

llm

conversation class-attribute instance-attribute

conversation = MaxSystemContextConversation(
    system_context=""
)

vector_store instance-attribute

vector_store

system_context class-attribute instance-attribute

system_context = SystemMessage(content='')

type class-attribute instance-attribute

type = 'RagAgent'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=AGENT.value)

version class-attribute instance-attribute

version = '0.1.0'

llm_kwargs class-attribute instance-attribute

llm_kwargs = {}

last_retrieved class-attribute instance-attribute

last_retrieved = Field(default_factory=list)

exec

exec(
    input_data="",
    top_k=5,
    preamble=True,
    fixed=False,
    llm_kwargs={},
)
Source code in swarmauri_standard/agents/RagAgent.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def exec(
    self,
    input_data: Optional[Union[str, IMessage]] = "",
    top_k: int = 5,
    preamble: bool = True,
    fixed: bool = False,
    llm_kwargs: Optional[Dict] = {},
) -> Any:
    llm_kwargs = llm_kwargs or self.llm_kwargs

    try:
        self._prepare_context(input_data, top_k, preamble, fixed)
        if llm_kwargs:
            self.llm.predict(conversation=self.conversation, **llm_kwargs)
        else:
            self.llm.predict(conversation=self.conversation)
        return self.conversation.get_last().content
    except Exception as e:
        print(f"RagAgent error: {e}")
        raise e

aexec async

aexec(
    input_data="",
    top_k=5,
    preamble=True,
    fixed=False,
    llm_kwargs={},
)
Source code in swarmauri_standard/agents/RagAgent.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
async def aexec(
    self,
    input_data: Optional[Union[str, IMessage]] = "",
    top_k: int = 5,
    preamble: bool = True,
    fixed: bool = False,
    llm_kwargs: Optional[Dict] = {},
) -> Any:
    llm_kwargs = llm_kwargs or self.llm_kwargs

    try:
        self._prepare_context(input_data, top_k, preamble, fixed)
        if llm_kwargs:
            await self.llm.apredict(conversation=self.conversation, **llm_kwargs)
        else:
            await self.llm.apredict(conversation=self.conversation)
        return self.conversation.get_last().content
    except Exception as e:
        print(f"RagAgent error: {e}")
        raise e

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

batch

batch(inputs, llm_kwargs=None)

File: AgentBase.py Class: AgentBase Method: batch

Default batch implementation: calls exec on each input in inputs. Subclasses can override for optimized bulk behavior.

Source code in swarmauri_base/agents/AgentBase.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def batch(
    self,
    inputs: List[Union[str, IMessage]],
    llm_kwargs: Optional[Dict] = None,
) -> List[Any]:
    """
    File: AgentBase.py
    Class: AgentBase
    Method: batch

    Default batch implementation: calls `exec` on each input in `inputs`.
    Subclasses can override for optimized bulk behavior.
    """
    llm_kwargs = llm_kwargs or self.llm_kwargs or {}
    results: List[Any] = []
    for inp in inputs:
        results.append(self.exec(inp, llm_kwargs=llm_kwargs))
    return results

abatch async

abatch(inputs, llm_kwargs=None)

File: AgentBase.py Class: AgentBase Method: abatch

Default async batch implementation: concurrently calls aexec on all inputs. Subclasses can override for more efficient implementations.

Source code in swarmauri_base/agents/AgentBase.py
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
async def abatch(
    self,
    inputs: List[Union[str, IMessage]],
    llm_kwargs: Optional[Dict] = None,
) -> List[Any]:
    """
    File: AgentBase.py
    Class: AgentBase
    Method: abatch

    Default async batch implementation: concurrently calls `aexec` on all inputs.
    Subclasses can override for more efficient implementations.
    """
    llm_kwargs = llm_kwargs or self.llm_kwargs or {}
    tasks = [self.aexec(inp, llm_kwargs=llm_kwargs) for inp in inputs]
    return await asyncio.gather(*tasks)

set_system_context

set_system_context(value)
Source code in swarmauri_base/agents/AgentSystemContextMixin.py
11
12
13
14
15
@field_validator("system_context", mode="before")
def set_system_context(cls, value: Union[str, SystemMessage]) -> SystemMessage:
    if isinstance(value, str):
        return SystemMessage(content=value)
    return value