Skip to content

Class swarmauri_standard.embeddings.CohereEmbedding.CohereEmbedding

swarmauri_standard.embeddings.CohereEmbedding.CohereEmbedding

CohereEmbedding(**kwargs)

Bases: EmbeddingBase

A class for generating embeddings using the Cohere REST API.

This class provides an interface to generate embeddings for text and image data using various Cohere embedding models. It supports different task types, embedding types, and truncation options.

ATTRIBUTE DESCRIPTION
type

The type identifier for this embedding class.

TYPE: Literal['CohereEmbedding']

model

The Cohere embedding model to use.

TYPE: str

api_key

The API key for accessing the Cohere API.

TYPE: SecretStr

allowed_task_types

List of supported task types for embeddings

TYPE: List[str]

Link to Allowed Models: https://docs.cohere.com/reference/embed Linke to API KEY: https://dashboard.cohere.com/api-keys

Initialize the CohereEmbedding instance.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments.

TYPE: Dict[str, Any] DEFAULT: {}

RAISES DESCRIPTION
ValueError

If any of the input parameters are invalid.

Source code in swarmauri_standard/embeddings/CohereEmbedding.py
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def __init__(
    self,
    **kwargs: Dict[str, Any],
):
    """
    Initialize the CohereEmbedding instance.

    Args:
        **kwargs: Additional keyword arguments.

    Raises:
        ValueError: If any of the input parameters are invalid.
    """
    super().__init__(**kwargs)

    if self.model not in self.allowed_models:
        raise ValueError(
            f"Invalid model '{self.model}'. Allowed models are: {', '.join(self.allowed_models)}"
        )

    if self.task_type not in self.allowed_task_types:
        raise ValueError(
            f"Invalid task_type '{self.task_type}'. Allowed task types are: {', '.join(self.allowed_task_types)}"
        )
    if self.embedding_types not in self._allowed_embedding_types:
        raise ValueError(
            f"Invalid embedding_types '{self.embedding_types}'. Allowed embedding types are: {', '.join(self._allowed_embedding_types)}"
        )
    if self.truncate not in ["END", "START", "NONE"]:
        raise ValueError(
            f"Invalid truncate '{self.truncate}'. Allowed truncate are: END, START, NONE"
        )
    self._client = httpx.Client()

type class-attribute instance-attribute

type = 'CohereEmbedding'

allowed_models class-attribute instance-attribute

allowed_models = [
    "embed-english-v3.0",
    "embed-multilingual-v3.0",
    "embed-english-light-v3.0",
    "embed-multilingual-light-v3.0",
    "embed-english-v2.0",
    "embed-english-light-v2.0",
    "embed-multilingual-v2.0",
]

allowed_task_types class-attribute instance-attribute

allowed_task_types = [
    "search_document",
    "search_query",
    "classification",
    "clustering",
    "image",
]

model class-attribute instance-attribute

model = 'embed-english-v3.0'

api_key class-attribute instance-attribute

api_key = None

task_type class-attribute instance-attribute

task_type = 'search_document'

embedding_types class-attribute instance-attribute

embedding_types = 'float'

truncate class-attribute instance-attribute

truncate = 'END'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=EMBEDDING.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

infer_vector

infer_vector(data)

Generate embeddings for the given list of texts or images.

PARAMETER DESCRIPTION
data

A list of texts or base64-encoded images.

TYPE: Union[List[str], List[str]]

RETURNS DESCRIPTION
List[Vector]

List[Vector]: A list of Vector objects containing the generated embeddings.

RAISES DESCRIPTION
RuntimeError

If an error occurs during the embedding generation process.

Source code in swarmauri_standard/embeddings/CohereEmbedding.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def infer_vector(self, data: Union[List[str], List[str]]) -> List[Vector]:
    """
    Generate embeddings for the given list of texts or images.

    Args:
        data (Union[List[str], List[str]]): A list of texts or base64-encoded images.

    Returns:
        List[Vector]: A list of Vector objects containing the generated embeddings.

    Raises:
        RuntimeError: If an error occurs during the embedding generation process.
    """
    try:
        # Prepare the payload based on input type
        payload = {
            "model": self.model,
            "embedding_types": [self.embedding_types],
        }

        if self.task_type == "image":
            payload["input_type"] = "image"
            payload["images"] = data
        else:
            payload["input_type"] = self.task_type
            payload["texts"] = data
            payload["truncate"] = self.truncate

        # Make the API request
        response = self._make_request(payload)

        # Extract embeddings from response
        embeddings = response["embeddings"][self.embedding_types]
        return [Vector(value=item) for item in embeddings]

    except Exception as e:
        raise RuntimeError(
            f"An error occurred during embedding generation: {str(e)}"
        )

save_model

save_model(path)
Source code in swarmauri_standard/embeddings/CohereEmbedding.py
174
175
def save_model(self, path: str):
    raise NotImplementedError("save_model is not applicable for Cohere embeddings")

load_model

load_model(path)
Source code in swarmauri_standard/embeddings/CohereEmbedding.py
177
178
def load_model(self, path: str):
    raise NotImplementedError("load_model is not applicable for Cohere embeddings")

fit

fit(documents, labels=None)
Source code in swarmauri_standard/embeddings/CohereEmbedding.py
180
181
def fit(self, documents: List[str], labels=None):
    raise NotImplementedError("fit is not applicable for Cohere embeddings")

transform

transform(data)
Source code in swarmauri_standard/embeddings/CohereEmbedding.py
183
184
def transform(self, data: List[str]):
    raise NotImplementedError("transform is not applicable for Cohere embeddings")

fit_transform

fit_transform(documents, **kwargs)
Source code in swarmauri_standard/embeddings/CohereEmbedding.py
186
187
188
189
def fit_transform(self, documents: List[str], **kwargs):
    raise NotImplementedError(
        "fit_transform is not applicable for Cohere embeddings"
    )

extract_features

extract_features()
Source code in swarmauri_standard/embeddings/CohereEmbedding.py
191
192
193
194
def extract_features(self):
    raise NotImplementedError(
        "extract_features is not applicable for Cohere embeddings"
    )

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger