Class swarmauri_standard.embeddings.GeminiEmbedding.GeminiEmbedding
swarmauri_standard.embeddings.GeminiEmbedding.GeminiEmbedding
GeminiEmbedding(**kwargs)
Bases: EmbeddingBase
A class for generating embeddings using the Google Gemini API via REST endpoints.
This class allows users to obtain embeddings for text data using specified models from the Gemini API through direct HTTP requests.
ATTRIBUTE | DESCRIPTION |
---|---|
model |
The model to use for generating embeddings. Defaults to 'text-embedding-004'.
TYPE:
|
allowed_models |
List of supported Gemini embedding models.
TYPE:
|
allowed_task_types |
List of supported task types for embeddings.
TYPE:
|
api_key |
API key for authentication. Can be None for serialization.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If an invalid model or task type is provided during initialization. |
Example
gemini_embedding = GeminiEmbedding(api_key='your_api_key', model='text-embedding-004') embeddings = gemini_embedding.infer_vector(["Hello, world!", "Data science is awesome."])
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
type
class-attribute
instance-attribute
type = 'GeminiEmbedding'
allowed_models
class-attribute
instance-attribute
allowed_models = ['text-embedding-004', 'embedding-001']
allowed_task_types
class-attribute
instance-attribute
allowed_task_types = [
"unspecified",
"retrieval_query",
"retrieval_document",
"semantic_similarity",
"classification",
"clustering",
"question_answering",
"fact_verification",
]
model
class-attribute
instance-attribute
model = Field(default='text-embedding-004')
api_key
class-attribute
instance-attribute
api_key = Field(default=None)
task_type
class-attribute
instance-attribute
task_type = Field(default='unspecified')
output_dimensionality
class-attribute
instance-attribute
output_dimensionality = Field(default=None)
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
infer_vector
infer_vector(data)
Generate embeddings for the given list of strings.
PARAMETER | DESCRIPTION |
---|---|
data
|
A list of strings to generate embeddings for.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Vector]
|
List[Vector]: A list of Vector objects containing the generated embeddings. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If an error occurs during the API request or response processing. |
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
transform
transform(data)
Transform a list of texts into embeddings.
PARAMETER | DESCRIPTION |
---|---|
data
|
List of strings to transform into embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Vector]
|
List[Vector]: A list of vectors representing the transformed data. |
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
129 130 131 132 133 134 135 136 137 138 139 |
|
save_model
save_model(path)
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
141 142 |
|
load_model
load_model(path)
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
144 145 |
|
fit
fit(documents, labels=None)
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
147 148 |
|
fit_transform
fit_transform(documents, **kwargs)
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
150 151 152 153 |
|
extract_features
extract_features()
Source code in swarmauri_standard/embeddings/GeminiEmbedding.py
155 156 157 158 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|