Skip to content

Class swarmauri_standard.image_gens.FalAIImgGenModel.FalAIImgGenModel

swarmauri_standard.image_gens.FalAIImgGenModel.FalAIImgGenModel

FalAIImgGenModel(**kwargs)

Bases: ImageGenBase

A model class for generating images from text using FluxPro's image generation model, provided by FalAI. This class uses a queue-based API to handle image generation requests.

ATTRIBUTE DESCRIPTION
allowed_models

List of valid model names for image generation.

TYPE: List[str]

api_key

The API key for authenticating requests with the FalAI service.

TYPE: str

model_name

The name of the model used for image generation.

TYPE: str

type

The model type, fixed as "FalAIImgGenModel".

TYPE: Literal

max_retries

The maximum number of retries for polling request status.

TYPE: int

retry_delay

Delay in seconds between status check retries.

TYPE: float

Initializes the model with the specified API key and model name.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments, which may includes api_key and allowed_models.

TYPE: Dict[str, Any] DEFAULT: {}

RAISES DESCRIPTION
ValueError

If an invalid model name is provided.

Source code in swarmauri_standard/image_gens/FalAIImgGenModel.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def __init__(self, **kwargs: Dict[str, Any]):
    """
    Initializes the model with the specified API key and model name.

    Args:
        **kwargs (Dict[str, Any]): Additional keyword arguments, which may includes api_key and allowed_models.

    Raises:
        ValueError: If an invalid model name is provided.
    """
    super().__init__(**kwargs)
    self._headers = {
        "Content-Type": "application/json",
        "Authorization": f"Key {self.api_key.get_secret_value()}",
    }
    self._client = httpx.Client(headers=self._headers, timeout=self.timeout)

allowed_models class-attribute instance-attribute

allowed_models = [
    "fal-ai/flux-pro/v1.1-ultra-finetuned",
    "fal-ai/minimax-image",
    "fal-ai/aura-flow",
    "fal-ai/flux/dev",
    "fal-ai/flux-lora",
    "fal-ai/flux-lora/inpainting",
    "fal-ai/flux/schnell",
    "fal-ai/flux-pro/v1.1",
    "fal-ai/flux-pro/new",
    "fal-ai/sana",
    "fal-ai/omnigen-v1",
    "fal-ai/lumina-image/v2",
    "fal-ai/stable-diffusion-v35-large",
    "fal-ai/switti",
    "fal-ai/switti/512",
    "fal-ai/recraft-20b",
    "fal-ai/ideogram/v2/turbo",
    "fal-ai/ideogram/v2a",
    "fal-ai/ideogram/v2a/turbo",
    "fal-ai/bria/text-to-image/base",
    "fal-ai/bria/text-to-image/fast",
    "fal-ai/bria/text-to-image/hd",
    "fal-ai/flux-control-lora-canny",
    "fal-ai/flux-control-lora-depth",
    "fal-ai/flux-general",
    "rundiffusion-fal/juggernaut-flux/base",
    "rundiffusion-fal/juggernaut-flux/lightning",
    "rundiffusion-fal/juggernaut-flux/pro",
    "rundiffusion-fal/juggernaut-flux-lora",
    "rundiffusion-fal/rundiffusion-photo-flux",
    "fal-ai/stable-diffusion-v3-medium",
    "fal-ai/fast-sdxl",
    "fal-ai/lora",
    "fal-ai/imagen3/fast",
    "fal-ai/imagen3",
    "fal-ai/janus",
    "fal-ai/sdxl-controlnet-union",
    "fal-ai/kolors",
    "fal-ai/stable-cascade/sote-diffusion",
    "fal-ai/lightning-models",
    "fal-ai/realistic-vision",
    "fal-ai/dreamshaper",
    "fal-ai/pixart-sigma",
    "fal-ai/stable-diffusion-v15",
    "fal-ai/layer-diffusion",
    "fal-ai/fast-fooocus-sdxl/image-to-image",
    "fal-ai/fast-fooocus-sdxl",
    "fal-ai/fooocus/inpaint",
    "fal-ai/fooocus/image-prompt",
    "fal-ai/fooocus/upscale-or-vary",
    "fal-ai/diffusion-edge",
    "fal-ai/fast-sdxl-controlnet-canny",
    "fal-ai/illusion-diffusion",
    "fal-ai/fooocus",
    "fal-ai/lcm",
    "fal-ai/playground-v25",
    "fal-ai/hyper-sdxl",
    "fal-ai/fast-lightning-sdxl",
    "fal-ai/fast-lcm-diffusion",
    "fal-ai/flowedit",
    "fal-ai/stable-cascade",
    "fal-ai/luma-photon",
    "fal-ai/luma-photon/flash",
    "fal-ai/cogview4",
    "fal-ai/fast-turbo-diffusion",
]

api_key class-attribute instance-attribute

api_key = Field(default=None)

name class-attribute instance-attribute

name = 'fal-ai/flux-pro/v1.1-ultra-finetuned'

timeout class-attribute instance-attribute

timeout = 600.0

type class-attribute instance-attribute

type = 'FalAIImgGenModel'

max_retries class-attribute instance-attribute

max_retries = Field(default=60)

retry_delay class-attribute instance-attribute

retry_delay = Field(default=1.0)

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=IMAGE_GEN.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

generate_image

generate_image(prompt, **kwargs)

Generates an image based on the prompt and returns the image URL.

PARAMETER DESCRIPTION
prompt

The text prompt for image generation.

TYPE: str

**kwargs

Additional parameters for the request.

TYPE: Dict[str, Any] DEFAULT: {}

RETURNS DESCRIPTION
str

The URL of the generated image.

TYPE: str

Source code in swarmauri_standard/image_gens/FalAIImgGenModel.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def generate_image(self, prompt: str, **kwargs: Dict[str, Any]) -> str:
    """
    Generates an image based on the prompt and returns the image URL.

    Args:
        prompt (str): The text prompt for image generation.
        **kwargs (Dict[str, Any]): Additional parameters for the request.

    Returns:
        str: The URL of the generated image.
    """
    initial_response = self._send_request(prompt, **kwargs)
    request_id = initial_response["request_id"]
    final_response = self._wait_for_completion(request_id)
    return final_response["images"][0]["url"]

agenerate_image async

agenerate_image(prompt, **kwargs)

Asynchronously generates an image based on the prompt and returns the image URL.

PARAMETER DESCRIPTION
prompt

The text prompt for image generation

TYPE: str

**kwargs

Additional parameters to pass to the API

TYPE: Dict[str, Any] DEFAULT: {}

RETURNS DESCRIPTION
str

The URL of the generated image

TYPE: str

Source code in swarmauri_standard/image_gens/FalAIImgGenModel.py
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
async def agenerate_image(self, prompt: str, **kwargs: Dict[str, Any]) -> str:
    """
    Asynchronously generates an image based on the prompt and returns the image URL.

    Args:
        prompt (str): The text prompt for image generation
        **kwargs (Dict[str, Any]): Additional parameters to pass to the API

    Returns:
        str: The URL of the generated image
    """
    try:
        initial_response = await self._async_send_request(prompt, **kwargs)
        request_id = initial_response["request_id"]
        final_response = await self._async_wait_for_completion(request_id)
        return final_response["images"][0]["url"]
    finally:
        await self._close_async_client()

batch_generate

batch_generate(prompts, **kwargs)

Generates images for a batch of prompts.

PARAMETER DESCRIPTION
prompts

List of text prompts

TYPE: List[str]

**kwargs

Additional parameters to pass to the API

TYPE: Dict[str, Any] DEFAULT: {}

RETURNS DESCRIPTION
List[str]

List[str]: List of image URLs

Source code in swarmauri_standard/image_gens/FalAIImgGenModel.py
349
350
351
352
353
354
355
356
357
358
359
360
def batch_generate(self, prompts: List[str], **kwargs: Dict[str, Any]) -> List[str]:
    """
    Generates images for a batch of prompts.

    Args:
        prompts (List[str]): List of text prompts
        **kwargs (Dict[str, Any]): Additional parameters to pass to the API

    Returns:
        List[str]: List of image URLs
    """
    return [self.generate_image(prompt, **kwargs) for prompt in prompts]

abatch_generate async

abatch_generate(prompts, max_concurrent=5, **kwargs)

Asynchronously generates images for a batch of prompts.

PARAMETER DESCRIPTION
prompts

List of text prompts

TYPE: List[str]

max_concurrent

Maximum number of concurrent requests

TYPE: int DEFAULT: 5

**kwargs

Additional parameters to pass to the API

TYPE: Dict[str, Any] DEFAULT: {}

RETURNS DESCRIPTION
List[str]

List[str]: List of image URLs

Source code in swarmauri_standard/image_gens/FalAIImgGenModel.py
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
async def abatch_generate(
    self, prompts: List[str], max_concurrent: int = 5, **kwargs: Dict[str, Any]
) -> List[str]:
    """
    Asynchronously generates images for a batch of prompts.

    Args:
        prompts (List[str]): List of text prompts
        max_concurrent (int): Maximum number of concurrent requests
        **kwargs (Dict[str, Any]): Additional parameters to pass to the API

    Returns:
        List[str]: List of image URLs
    """
    try:
        semaphore = asyncio.Semaphore(max_concurrent)

        async def process_prompt(prompt):
            async with semaphore:
                initial_response = await self._async_send_request(prompt, **kwargs)
                request_id = initial_response["request_id"]
                final_response = await self._async_wait_for_completion(request_id)
                return final_response["response"]["images"][0]["url"]

        tasks = [process_prompt(prompt) for prompt in prompts]
        return await asyncio.gather(*tasks)
    finally:
        await self._close_async_client()

get_allowed_models

get_allowed_models()

Queries the LLMProvider API endpoint to get the list of allowed models.

RETURNS DESCRIPTION
List[str]

List[str]: List of allowed model names.

Source code in swarmauri_standard/image_gens/FalAIImgGenModel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def get_allowed_models(self) -> List[str]:
    """
    Queries the LLMProvider API endpoint to get the list of allowed models.

    Returns:
        List[str]: List of allowed model names.
    """
    return [
        "fal-ai/flux-pro/v1.1-ultra-finetuned",
        "fal-ai/minimax-image",
        "fal-ai/aura-flow",
        "fal-ai/flux/dev",
        "fal-ai/flux-lora",
        "fal-ai/flux-lora/inpainting",
        "fal-ai/flux/schnell",
        "fal-ai/flux-pro/v1.1",
        "fal-ai/flux-pro/new",
        "fal-ai/sana",
        "fal-ai/omnigen-v1",
        "fal-ai/lumina-image/v2",
        "fal-ai/stable-diffusion-v35-large",
        "fal-ai/switti",
        "fal-ai/switti/512",
        "fal-ai/recraft-20b",
        "fal-ai/ideogram/v2/turbo",
        "fal-ai/ideogram/v2a",
        "fal-ai/ideogram/v2a/turbo",
        "fal-ai/bria/text-to-image/base",
        "fal-ai/bria/text-to-image/fast",
        "fal-ai/bria/text-to-image/hd",
        "fal-ai/flux-control-lora-canny",
        "fal-ai/flux-control-lora-depth",
        "fal-ai/flux-general",
        "rundiffusion-fal/juggernaut-flux/base",
        "rundiffusion-fal/juggernaut-flux/lightning",
        "rundiffusion-fal/juggernaut-flux/pro",
        "rundiffusion-fal/juggernaut-flux-lora",
        "rundiffusion-fal/rundiffusion-photo-flux",
        "fal-ai/stable-diffusion-v3-medium",
        "fal-ai/fast-sdxl",
        "fal-ai/lora",
        "fal-ai/imagen3/fast",
        "fal-ai/imagen3",
        "fal-ai/janus",
        "fal-ai/sdxl-controlnet-union",
        "fal-ai/kolors",
        "fal-ai/stable-cascade/sote-diffusion",
        "fal-ai/lightning-models",
        "fal-ai/realistic-vision",
        "fal-ai/dreamshaper",
        "fal-ai/pixart-sigma",
        "fal-ai/stable-diffusion-v15",
        "fal-ai/layer-diffusion",
        "fal-ai/fast-fooocus-sdxl/image-to-image",
        "fal-ai/fast-fooocus-sdxl",
        "fal-ai/fooocus/inpaint",
        "fal-ai/fooocus/image-prompt",
        "fal-ai/fooocus/upscale-or-vary",
        "fal-ai/diffusion-edge",
        "fal-ai/fast-sdxl-controlnet-canny",
        "fal-ai/illusion-diffusion",
        "fal-ai/fooocus",
        "fal-ai/lcm",
        "fal-ai/playground-v25",
        "fal-ai/hyper-sdxl",
        "fal-ai/fast-lightning-sdxl",
        "fal-ai/fast-lcm-diffusion",
        "fal-ai/flowedit",
        "fal-ai/stable-cascade",
        "fal-ai/luma-photon",
        "fal-ai/luma-photon/flash",
        "fal-ai/cogview4",
        "fal-ai/fast-turbo-diffusion",
    ]

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger