Skip to content

Class swarmauri_standard.image_gens.HyperbolicImgGenModel.HyperbolicImgGenModel

swarmauri_standard.image_gens.HyperbolicImgGenModel.HyperbolicImgGenModel

HyperbolicImgGenModel(**kwargs)

Bases: ImageGenBase

A model class for generating images from text prompts using Hyperbolic's image generation API.

ATTRIBUTE DESCRIPTION
api_key

The API key for authenticating with the Hyperbolic API.

TYPE: str

allowed_models

A list of available models for image generation.

TYPE: List[str]

asyncio

The asyncio module for handling asynchronous operations.

TYPE: ClassVar

name

The name of the model to be used for image generation.

TYPE: str

type

The type identifier for the model class.

TYPE: Literal['HyperbolicImgGenModel']

height

Height of the generated image.

TYPE: int

width

Width of the generated image.

TYPE: int

steps

Number of inference steps.

TYPE: int

cfg_scale

Classifier-free guidance scale.

TYPE: float

enable_refiner

Whether to enable the refiner model.

TYPE: bool

backend

Computational backend for the model.

TYPE: str

Link to Allowed Models: https://app.hyperbolic.xyz/models Link to API KEYS: https://app.hyperbolic.xyz/settings

Initializes the HyperbolicImgGenModel instance.

This constructor sets up HTTP clients for both synchronous and asynchronous operations and configures request headers with the provided API key.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments, which may include api_key and allowed_models.

TYPE: Dict[str, Any] DEFAULT: {}

Source code in swarmauri_standard/image_gens/HyperbolicImgGenModel.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def __init__(self, **kwargs: Dict[str, Any]):
    """
    Initializes the HyperbolicImgGenModel instance.

    This constructor sets up HTTP clients for both synchronous and asynchronous
    operations and configures request headers with the provided API key.

    Args:
        **kwargs (Dict[str, Any]): Additional keyword arguments, which may include api_key and allowed_models.
    """
    super().__init__(**kwargs)
    self._headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {self.api_key.get_secret_value()}",
    }
    self._client = httpx.Client(headers=self._headers, timeout=30)

api_key instance-attribute

api_key

allowed_models class-attribute instance-attribute

allowed_models = [
    "SDXL1.0-base",
    "SD1.5",
    "SSD",
    "SD2",
    "SDXL-turbo",
]

timeout class-attribute instance-attribute

timeout = 600.0

name class-attribute instance-attribute

name = ''

type class-attribute instance-attribute

type = 'HyperbolicImgGenModel'

height class-attribute instance-attribute

height = 1024

width class-attribute instance-attribute

width = 1024

steps class-attribute instance-attribute

steps = 30

cfg_scale class-attribute instance-attribute

cfg_scale = 5.0

enable_refiner class-attribute instance-attribute

enable_refiner = False

backend class-attribute instance-attribute

backend = 'auto'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=IMAGE_GEN.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

generate_image

generate_image(prompt)

Generates an image synchronously based on the provided prompt and returns it as a base64-encoded string.

PARAMETER DESCRIPTION
prompt

The text prompt used for generating the image.

TYPE: str

RETURNS DESCRIPTION
str

The base64-encoded representation of the generated image.

TYPE: str

Source code in swarmauri_standard/image_gens/HyperbolicImgGenModel.py
141
142
143
144
145
146
147
148
149
150
151
152
def generate_image(self, prompt: str) -> str:
    """
    Generates an image synchronously based on the provided prompt and returns it as a base64-encoded string.

    Args:
        prompt (str): The text prompt used for generating the image.

    Returns:
        str: The base64-encoded representation of the generated image.
    """
    response_data = self._send_request(prompt)
    return response_data["images"][0]["image"]

agenerate_image async

agenerate_image(prompt)

Generates an image asynchronously based on the provided prompt and returns it as a base64-encoded string.

PARAMETER DESCRIPTION
prompt

The text prompt used for generating the image.

TYPE: str

RETURNS DESCRIPTION
str

The base64-encoded representation of the generated image.

TYPE: str

Source code in swarmauri_standard/image_gens/HyperbolicImgGenModel.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
async def agenerate_image(self, prompt: str) -> str:
    """
    Generates an image asynchronously based on the provided prompt and returns it as a base64-encoded string.

    Args:
        prompt (str): The text prompt used for generating the image.

    Returns:
        str: The base64-encoded representation of the generated image.
    """
    try:
        response_data = await self._async_send_request(prompt)
        return response_data["images"][0]["image"]
    finally:
        await self._close_async_client()

batch_generate

batch_generate(prompts)

Generates images for a batch of prompts synchronously and returns them as a list of base64-encoded strings.

PARAMETER DESCRIPTION
prompts

A list of text prompts for image generation.

TYPE: List[str]

RETURNS DESCRIPTION
List[str]

List[str]: A list of base64-encoded representations of the generated images.

Source code in swarmauri_standard/image_gens/HyperbolicImgGenModel.py
170
171
172
173
174
175
176
177
178
179
180
def batch_generate(self, prompts: List[str]) -> List[str]:
    """
    Generates images for a batch of prompts synchronously and returns them as a list of base64-encoded strings.

    Args:
        prompts (List[str]): A list of text prompts for image generation.

    Returns:
        List[str]: A list of base64-encoded representations of the generated images.
    """
    return [self.generate_image_base64(prompt) for prompt in prompts]

abatch_generate async

abatch_generate(prompts, max_concurrent=5)

Generates images for a batch of prompts asynchronously and returns them as a list of base64-encoded strings.

PARAMETER DESCRIPTION
prompts

A list of text prompts for image generation.

TYPE: List[str]

max_concurrent

The maximum number of concurrent tasks.

TYPE: int DEFAULT: 5

RETURNS DESCRIPTION
List[str]

List[str]: A list of base64-encoded representations of the generated images.

Source code in swarmauri_standard/image_gens/HyperbolicImgGenModel.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
async def abatch_generate(
    self, prompts: List[str], max_concurrent: int = 5
) -> List[str]:
    """
    Generates images for a batch of prompts asynchronously and returns them as a list of base64-encoded strings.

    Args:
        prompts (List[str]): A list of text prompts for image generation.
        max_concurrent (int): The maximum number of concurrent tasks.

    Returns:
        List[str]: A list of base64-encoded representations of the generated images.
    """
    try:
        semaphore = asyncio.Semaphore(max_concurrent)

        async def process_prompt(prompt):
            async with semaphore:
                response_data = await self._async_send_request(prompt)
                return response_data["images"][0]["image"]

        tasks = [process_prompt(prompt) for prompt in prompts]
        return await asyncio.gather(*tasks)
    finally:
        await self._close_async_client()

get_allowed_models

get_allowed_models()

Queries the LLMProvider API endpoint to get the list of allowed models.

RETURNS DESCRIPTION
List[str]

List[str]: List of allowed model names.

Source code in swarmauri_standard/image_gens/HyperbolicImgGenModel.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def get_allowed_models(self) -> List[str]:
    """
    Queries the LLMProvider API endpoint to get the list of allowed models.

    Returns:
        List[str]: List of allowed model names.
    """
    return [
        "SDXL1.0-base",
        "SD1.5",
        "SSD",
        "SD2",
        "SDXL-turbo",
    ]

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger