Skip to content

Class swarmauri_standard.image_gens.OpenAIImgGenModel.OpenAIImgGenModel

swarmauri_standard.image_gens.OpenAIImgGenModel.OpenAIImgGenModel

OpenAIImgGenModel(**kwargs)

Bases: ImageGenBase

OpenAIImgGenModel is a class for generating images using OpenAI's DALL-E models.

ATTRIBUTE DESCRIPTION
api_key

The API key for authenticating with the OpenAI API.

TYPE: str

allowed_models

List of allowed model names.

TYPE: List[str]

name

The name of the model to use.

TYPE: str

type

The type of the model.

TYPE: Literal['OpenAIImgGenModel']

Provider Resources: https://platform.openai.com/docs/api-reference/images/generate

Initialize the GroqAIAudio class with the provided data.

PARAMETER DESCRIPTION
**kwargs

Additional keyword arguments, which may include api_key and allowed_models.

TYPE: Dict[str, Any] DEFAULT: {}

Source code in swarmauri_standard/image_gens/OpenAIImgGenModel.py
34
35
36
37
38
39
40
41
42
43
44
45
def __init__(self, **kwargs: Dict[str, Any]) -> None:
    """
    Initialize the GroqAIAudio class with the provided data.

    Args:
        **kwargs (Dict[str, Any]): Additional keyword arguments, which may include api_key and allowed_models.
    """
    super().__init__(**kwargs)
    self._headers = {
        "Authorization": f"Bearer {self.api_key.get_secret_value()}",
        "Content-Type": "application/json",
    }

api_key instance-attribute

api_key

allowed_models class-attribute instance-attribute

allowed_models = ['dall-e-2', 'dall-e-3']

name class-attribute instance-attribute

name = 'dall-e-2'

type class-attribute instance-attribute

type = 'OpenAIImgGenModel'

timeout class-attribute instance-attribute

timeout = 600.0

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=IMAGE_GEN.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

generate_image

generate_image(
    prompt,
    size="1024x1024",
    quality="standard",
    n=1,
    style=None,
)

Generate images using the OpenAI DALL-E model synchronously.

Parameters: - prompt (str): The prompt to generate images from. - size (str): Size of the generated images. - quality (str): Quality of the generated images. - n (int): Number of images to generate. - style (str): Optional style of the generated images.

Returns: - List of URLs of the generated images.

Source code in swarmauri_standard/image_gens/OpenAIImgGenModel.py
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
@retry_on_status_codes((429, 529), max_retries=1)
def generate_image(
    self,
    prompt: str,
    size: str = "1024x1024",
    quality: str = "standard",
    n: int = 1,
    style: Optional[str] = None,
) -> List[str]:
    """
    Generate images using the OpenAI DALL-E model synchronously.

    Parameters:
    - prompt (str): The prompt to generate images from.
    - size (str): Size of the generated images.
    - quality (str): Quality of the generated images.
    - n (int): Number of images to generate.
    - style (str): Optional style of the generated images.

    Returns:
    - List of URLs of the generated images.
    """
    if self.name == "dall-e-3" and n > 1:
        raise ValueError("DALL-E 3 only supports generating 1 image at a time.")

    payload = {
        "model": self.name,
        "prompt": prompt,
        "size": size,
        "quality": quality,
        "n": n,
    }

    if style and self.name == "dall-e-3":
        payload["style"] = style

    try:
        with httpx.Client(timeout=self.timeout) as client:
            response = client.post(
                self._BASE_URL, headers=self._headers, json=payload
            )
            response.raise_for_status()
            return [image["url"] for image in response.json().get("data", [])]
    except httpx.HTTPStatusError as e:
        raise RuntimeError(f"Image generation failed: {e}")

agenerate_image async

agenerate_image(
    prompt,
    size="1024x1024",
    quality="standard",
    n=1,
    style=None,
)

Generate images using the OpenAI DALL-E model asynchronously.

Parameters: - prompt (str): The prompt to generate images from. - size (str): Size of the generated images. - quality (str): Quality of the generated images. - n (int): Number of images to generate. - style (str): Optional style of the generated images.

Returns: - List of URLs of the generated images.

Source code in swarmauri_standard/image_gens/OpenAIImgGenModel.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
@retry_on_status_codes((429, 529), max_retries=1)
async def agenerate_image(
    self,
    prompt: str,
    size: str = "1024x1024",
    quality: str = "standard",
    n: int = 1,
    style: Optional[str] = None,
) -> List[str]:
    """
    Generate images using the OpenAI DALL-E model asynchronously.

    Parameters:
    - prompt (str): The prompt to generate images from.
    - size (str): Size of the generated images.
    - quality (str): Quality of the generated images.
    - n (int): Number of images to generate.
    - style (str): Optional style of the generated images.

    Returns:
    - List of URLs of the generated images.
    """
    if self.name == "dall-e-3" and n > 1:
        raise ValueError("DALL-E 3 only supports generating 1 image at a time.")

    payload = {
        "model": self.name,
        "prompt": prompt,
        "size": size,
        "quality": quality,
        "n": n,
    }

    if style and self.name == "dall-e-3":
        payload["style"] = style

    try:
        async with httpx.AsyncClient(timeout=self.timeout) as client:
            response = await client.post(
                self._BASE_URL, headers=self._headers, json=payload
            )
            response.raise_for_status()
            return [image["url"] for image in response.json().get("data", [])]
    except httpx.HTTPStatusError as e:
        raise RuntimeError(f"Image generation failed: {e}")

batch

batch(
    prompts,
    size="1024x1024",
    quality="standard",
    n=1,
    style=None,
)

Synchronously process multiple prompts for image generation.

Parameters: - prompts (List[str]): List of prompts. - size (str): Size of the generated images. - quality (str): Quality of the generated images. - n (int): Number of images to generate. - style (str): Optional style of the generated images.

Returns: - List of lists of URLs of the generated images.

Source code in swarmauri_standard/image_gens/OpenAIImgGenModel.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def batch(
    self,
    prompts: List[str],
    size: str = "1024x1024",
    quality: str = "standard",
    n: int = 1,
    style: Optional[str] = None,
) -> List[List[str]]:
    """
    Synchronously process multiple prompts for image generation.

    Parameters:
    - prompts (List[str]): List of prompts.
    - size (str): Size of the generated images.
    - quality (str): Quality of the generated images.
    - n (int): Number of images to generate.
    - style (str): Optional style of the generated images.

    Returns:
    - List of lists of URLs of the generated images.
    """
    return [
        self.generate_image(prompt, size=size, quality=quality, n=n, style=style)
        for prompt in prompts
    ]

abatch async

abatch(
    prompts,
    size="1024x1024",
    quality="standard",
    n=1,
    style=None,
    max_concurrent=5,
)

Asynchronously process multiple prompts for image generation with controlled concurrency.

Parameters: - prompts (List[str]): List of prompts. - size (str): Size of the generated images. - quality (str): Quality of the generated images. - n (int): Number of images to generate. - style (str): Optional style of the generated images. - max_concurrent (int): Maximum number of concurrent requests.

Returns: - List of lists of URLs of the generated images.

Source code in swarmauri_standard/image_gens/OpenAIImgGenModel.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
async def abatch(
    self,
    prompts: List[str],
    size: str = "1024x1024",
    quality: str = "standard",
    n: int = 1,
    style: Optional[str] = None,
    max_concurrent: int = 5,
) -> List[List[str]]:
    """
    Asynchronously process multiple prompts for image generation with controlled concurrency.

    Parameters:
    - prompts (List[str]): List of prompts.
    - size (str): Size of the generated images.
    - quality (str): Quality of the generated images.
    - n (int): Number of images to generate.
    - style (str): Optional style of the generated images.
    - max_concurrent (int): Maximum number of concurrent requests.

    Returns:
    - List of lists of URLs of the generated images.
    """
    semaphore = asyncio.Semaphore(max_concurrent)

    async def process_prompt(prompt) -> List[str]:
        async with semaphore:
            return await self.agenerate_image(
                prompt, size=size, quality=quality, n=n, style=style
            )

    tasks = [process_prompt(prompt) for prompt in prompts]
    return await asyncio.gather(*tasks)

get_allowed_models

get_allowed_models()

Queries the LLMProvider API endpoint to get the list of allowed models.

RETURNS DESCRIPTION
List[str]

List[str]: List of allowed model names.

Source code in swarmauri_standard/image_gens/OpenAIImgGenModel.py
199
200
201
202
203
204
205
206
def get_allowed_models(self) -> List[str]:
    """
    Queries the LLMProvider API endpoint to get the list of allowed models.

    Returns:
        List[str]: List of allowed model names.
    """
    return ["dall-e-2", "dall-e-3"]

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

batch_generate abstractmethod

batch_generate(*args, **kwargs)

Generate images based on the input data provided to the model.

Source code in swarmauri_base/image_gens/ImageGenBase.py
41
42
43
44
45
46
@abstractmethod
def batch_generate(self, *args, **kwargs) -> any:
    """
    Generate images based on the input data provided to the model.
    """
    raise NotImplementedError("batch_generate() not implemented in subclass yet.")

abatch_generate abstractmethod async

abatch_generate(*args, **kwargs)

Generate images based on the input data provided to the model.

Source code in swarmauri_base/image_gens/ImageGenBase.py
48
49
50
51
52
53
@abstractmethod
async def abatch_generate(self, *args, **kwargs) -> any:
    """
    Generate images based on the input data provided to the model.
    """
    raise NotImplementedError("abatch_generate() not implemented in subclass yet.")