Skip to content

Class swarmauri_standard.inner_products.TraceFormWeightedInnerProduct.TraceFormWeightedInnerProduct

swarmauri_standard.inner_products.TraceFormWeightedInnerProduct.TraceFormWeightedInnerProduct

TraceFormWeightedInnerProduct(weight_matrix=None, **kwargs)

Bases: InnerProductBase

Matrix-based inner product where trace is modulated by an external weight matrix.

This class implements an inner product calculation between matrices where the inner product is defined as trace(A^T * W * B), where W is a weight matrix. The weight matrix modulates the importance of different elements in the matrices.

Attributes

type : Literal["TraceFormWeightedInnerProduct"] The type identifier for this inner product implementation resource : str The resource type identifier, defaulting to INNER_PRODUCT weight_matrix : np.ndarray The weight matrix used to modulate the inner product calculation

Initialize the TraceFormWeightedInnerProduct with an optional weight matrix.

Parameters

weight_matrix : Optional[np.ndarray], default=None The weight matrix to use for inner product calculations. If None, an identity matrix will be used.

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def __init__(self, weight_matrix: Optional[np.ndarray] = None, **kwargs):
    """
    Initialize the TraceFormWeightedInnerProduct with an optional weight matrix.

    Parameters
    ----------
    weight_matrix : Optional[np.ndarray], default=None
        The weight matrix to use for inner product calculations.
        If None, an identity matrix will be used.
    """
    if weight_matrix is None:
        # Default to identity matrix if no weight matrix is provided
        weight_matrix = np.eye(1)
        logger.info("No weight matrix provided, using identity matrix.")
    else:
        # Ensure the weight matrix is a numpy array
        weight_matrix = np.array(weight_matrix)
        logger.info(
            f"Initialized with weight matrix of shape {weight_matrix.shape}"
        )
    kwargs["weight_matrix"] = weight_matrix
    super().__init__(**kwargs)

type class-attribute instance-attribute

type = 'TraceFormWeightedInnerProduct'

weight_matrix instance-attribute

weight_matrix

model_config class-attribute instance-attribute

model_config = ConfigDict(
    arbitrary_types_allowed=True,
    json_encoders={ndarray: lambda v: tolist()},
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = INNER_PRODUCT.value

version class-attribute instance-attribute

version = '0.1.0'

compute

compute(a, b)

Compute the weighted trace inner product between two matrices.

The inner product is defined as trace(A^T * W * B), where W is the weight matrix. For complex matrices, we use the conjugate transpose A^H instead of transpose A^T.

Parameters

a : Union[Vector, Matrix, Callable] The first matrix for inner product calculation b : Union[Vector, Matrix, Callable] The second matrix for inner product calculation

Returns

float The inner product value

Raises

ValueError If the input objects are not matrices or have incompatible dimensions

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def compute(
    self, a: Union[Vector, Matrix, Callable], b: Union[Vector, Matrix, Callable]
) -> float:
    """
    Compute the weighted trace inner product between two matrices.

    The inner product is defined as trace(A^T * W * B), where W is the weight matrix.
    For complex matrices, we use the conjugate transpose A^H instead of transpose A^T.

    Parameters
    ----------
    a : Union[Vector, Matrix, Callable]
        The first matrix for inner product calculation
    b : Union[Vector, Matrix, Callable]
        The second matrix for inner product calculation

    Returns
    -------
    float
        The inner product value

    Raises
    ------
    ValueError
        If the input objects are not matrices or have incompatible dimensions
    """
    logger.debug(
        f"Computing weighted trace inner product between {type(a)} and {type(b)}"
    )

    # Convert inputs to numpy arrays if they aren't already
    if not isinstance(a, np.ndarray):
        a = np.array(a)
    if not isinstance(b, np.ndarray):
        b = np.array(b)

    # Check if dimensions are compatible
    if (
        a.shape[0] != self.weight_matrix.shape[0]
        or b.shape[0] != self.weight_matrix.shape[1]
    ):
        error_msg = (
            f"Incompatible dimensions: a.shape={a.shape}, "
            f"weight_matrix.shape={self.weight_matrix.shape}, b.shape={b.shape}"
        )
        logger.error(error_msg)
        raise ValueError(error_msg)

    # Compute the weighted trace inner product
    try:
        # For complex matrices, use conjugate transpose (Hermitian)
        if (
            np.iscomplexobj(a)
            or np.iscomplexobj(b)
            or np.iscomplexobj(self.weight_matrix)
        ):
            # Calculate A^H * W * B (conjugate transpose)
            weighted_product = np.matmul(
                a.conj().T, np.matmul(self.weight_matrix, b)
            )
        else:
            # Calculate A^T * W * B (regular transpose for real matrices)
            weighted_product = np.matmul(a.T, np.matmul(self.weight_matrix, b))

        # Take the trace
        result = np.trace(weighted_product)
        logger.debug(f"Inner product result: {result}")
        return result if np.iscomplexobj(result) else float(result)
    except Exception as e:
        logger.error(f"Error computing inner product: {str(e)}")
        raise

check_conjugate_symmetry

check_conjugate_symmetry(a, b)

Check if the inner product satisfies the conjugate symmetry property: = * (complex conjugate).

For the weighted trace inner product, this property holds if the weight matrix is Hermitian (equal to its own conjugate transpose).

Parameters

a : Union[Vector, Matrix, Callable] The first matrix b : Union[Vector, Matrix, Callable] The second matrix

Returns

bool True if conjugate symmetry holds, False otherwise

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def check_conjugate_symmetry(
    self, a: Union[Vector, Matrix, Callable], b: Union[Vector, Matrix, Callable]
) -> bool:
    """
    Check if the inner product satisfies the conjugate symmetry property:
    <a, b> = <b, a>* (complex conjugate).

    For the weighted trace inner product, this property holds if the weight matrix is Hermitian
    (equal to its own conjugate transpose).

    Parameters
    ----------
    a : Union[Vector, Matrix, Callable]
        The first matrix
    b : Union[Vector, Matrix, Callable]
        The second matrix

    Returns
    -------
    bool
        True if conjugate symmetry holds, False otherwise
    """
    logger.debug(f"Checking conjugate symmetry for {type(a)} and {type(b)}")

    # First, check if the weight matrix is Hermitian
    is_hermitian = np.allclose(
        self.weight_matrix, self.weight_matrix.T.conj(), rtol=1e-5, atol=1e-8
    )

    if not is_hermitian:
        logger.debug(
            "Weight matrix is not Hermitian, conjugate symmetry does not hold"
        )
        return False

    # If weight matrix is Hermitian, compute both inner products to verify
    try:
        ip_ab = self.compute(a, b)
        ip_ba = self.compute(b, a)

        # For complex matrices, we need to take the complex conjugate
        ip_ba_conj = np.conj(ip_ba)

        # Use more relaxed tolerances for complex numbers
        result = np.isclose(ip_ab, ip_ba_conj, rtol=1e-4, atol=1e-6)

        logger.debug(
            f"Conjugate symmetry values: <a,b>={ip_ab}, <b,a>*={ip_ba_conj}, diff={abs(ip_ab - ip_ba_conj)}"
        )
        return bool(result)
    except Exception as e:
        logger.error(f"Error checking conjugate symmetry: {str(e)}")
        return False

check_linearity_first_argument

check_linearity_first_argument(a1, a2, b, alpha, beta)

Check if the inner product satisfies linearity in the first argument: = alpha + beta.

Parameters

a1 : Union[Vector, Matrix, Callable] First component of the first argument a2 : Union[Vector, Matrix, Callable] Second component of the first argument b : Union[Vector, Matrix, Callable] The second matrix alpha : float Scalar multiplier for a1 beta : float Scalar multiplier for a2

Returns

bool True if linearity in the first argument holds, False otherwise

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def check_linearity_first_argument(
    self,
    a1: Union[Vector, Matrix, Callable],
    a2: Union[Vector, Matrix, Callable],
    b: Union[Vector, Matrix, Callable],
    alpha: float,
    beta: float,
) -> bool:
    """
    Check if the inner product satisfies linearity in the first argument:
    <alpha*a1 + beta*a2, b> = alpha*<a1, b> + beta*<a2, b>.

    Parameters
    ----------
    a1 : Union[Vector, Matrix, Callable]
        First component of the first argument
    a2 : Union[Vector, Matrix, Callable]
        Second component of the first argument
    b : Union[Vector, Matrix, Callable]
        The second matrix
    alpha : float
        Scalar multiplier for a1
    beta : float
        Scalar multiplier for a2

    Returns
    -------
    bool
        True if linearity in the first argument holds, False otherwise
    """
    logger.debug(
        f"Checking linearity in first argument with alpha={alpha}, beta={beta}"
    )

    try:
        # Convert inputs to numpy arrays if they aren't already
        if not isinstance(a1, np.ndarray):
            a1 = np.array(a1)
        if not isinstance(a2, np.ndarray):
            a2 = np.array(a2)
        if not isinstance(b, np.ndarray):
            b = np.array(b)

        # Check if dimensions are compatible
        if a1.shape != a2.shape:
            logger.error(
                f"Incompatible dimensions: a1.shape={a1.shape}, a2.shape={a2.shape}"
            )
            return False

        # Compute left-hand side: <alpha*a1 + beta*a2, b>
        linear_combination = alpha * a1 + beta * a2
        lhs = self.compute(linear_combination, b)

        # Compute right-hand side: alpha*<a1, b> + beta*<a2, b>
        rhs = alpha * self.compute(a1, b) + beta * self.compute(a2, b)

        result = np.isclose(lhs, rhs)
        logger.debug(f"Linearity check result: {result}")
        return bool(result)
    except Exception as e:
        logger.error(f"Error checking linearity: {str(e)}")
        return False

check_positivity

check_positivity(a)

Check if the inner product satisfies the positivity property: >= 0 and = 0 iff a = 0.

For the weighted trace inner product, this property holds if the weight matrix is positive semi-definite.

Parameters

a : Union[Vector, Matrix, Callable] The matrix to check positivity for

Returns

bool True if positivity holds, False otherwise

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def check_positivity(self, a: Union[Vector, Matrix, Callable]) -> bool:
    """
    Check if the inner product satisfies the positivity property:
    <a, a> >= 0 and <a, a> = 0 iff a = 0.

    For the weighted trace inner product, this property holds if the weight matrix is positive semi-definite.

    Parameters
    ----------
    a : Union[Vector, Matrix, Callable]
        The matrix to check positivity for

    Returns
    -------
    bool
        True if positivity holds, False otherwise
    """
    logger.debug(f"Checking positivity for {type(a)}")

    # First, check if the weight matrix is positive semi-definite
    try:
        # Compute eigenvalues of the weight matrix
        eigenvalues = np.linalg.eigvalsh(self.weight_matrix)
        is_psd = np.all(eigenvalues >= -1e-10)  # Allow for small numerical errors

        if not is_psd:
            logger.debug(
                "Weight matrix is not positive semi-definite, positivity does not hold"
            )
            return False

        # Convert input to numpy array if it isn't already
        if not isinstance(a, np.ndarray):
            a = np.array(a)

        # Check if a is zero
        is_zero = np.allclose(a, np.zeros_like(a))

        # Compute <a, a>
        inner_product = self.compute(a, a)

        # Check if inner product is non-negative
        is_non_negative = (
            inner_product >= -1e-10
        )  # Allow for small numerical errors

        # Check if <a, a> = 0 iff a = 0
        if is_zero:
            is_zero_condition = np.isclose(inner_product, 0)
        else:
            is_zero_condition = inner_product > 0

        result = is_non_negative and is_zero_condition
        logger.debug(f"Positivity check result: {result}")
        return bool(result)
    except Exception as e:
        logger.error(f"Error checking positivity: {str(e)}")
        return False

set_weight_matrix

set_weight_matrix(weight_matrix)

Set a new weight matrix for the inner product calculations.

Parameters

weight_matrix : np.ndarray The new weight matrix to use

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
315
316
317
318
319
320
321
322
323
324
325
def set_weight_matrix(self, weight_matrix: np.ndarray) -> None:
    """
    Set a new weight matrix for the inner product calculations.

    Parameters
    ----------
    weight_matrix : np.ndarray
        The new weight matrix to use
    """
    logger.info(f"Setting new weight matrix of shape {weight_matrix.shape}")
    self.weight_matrix = np.array(weight_matrix)

get_weight_matrix

get_weight_matrix()

Get the current weight matrix.

Returns

np.ndarray The current weight matrix

Source code in swarmauri_standard/inner_products/TraceFormWeightedInnerProduct.py
327
328
329
330
331
332
333
334
335
336
def get_weight_matrix(self) -> np.ndarray:
    """
    Get the current weight matrix.

    Returns
    -------
    np.ndarray
        The current weight matrix
    """
    return self.weight_matrix

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger