Class swarmauri_standard.llms.CohereToolModel.CohereToolModel
swarmauri_standard.llms.CohereToolModel.CohereToolModel
CohereToolModel(**data)
Bases: LLMBase
A language model implementation for interacting with Cohere's API, specifically designed for tool-augmented conversations.
This class provides both synchronous and asynchronous methods for generating responses, handling tool calls, and managing conversations with the Cohere API. It supports streaming responses and batch processing of multiple conversations.
ATTRIBUTE | DESCRIPTION |
---|---|
api_key |
The API key for authenticating with Cohere's API
TYPE:
|
allowed_models |
List of supported Cohere model names
TYPE:
|
name |
The default model name to use
TYPE:
|
type |
The type identifier for this model
TYPE:
|
resource |
The resource type identifier
TYPE:
|
timeout |
Maximum timeout for API requests in seconds
TYPE:
|
Link to Allowed Models: https://docs.cohere.com/docs/models#command Link to API Key: https://dashboard.cohere.com/api-keys
Initialize the CohereToolModel with the provided configuration.
PARAMETER | DESCRIPTION |
---|---|
**data
|
Keyword arguments for configuring the model, including api_key
TYPE:
|
Source code in swarmauri_standard/llms/CohereToolModel.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
api_key
instance-attribute
api_key
allowed_models
class-attribute
instance-attribute
allowed_models = [
"command-a-03-2025",
"command-r7b-12-2024",
"command-a-translate-08-2025",
"command-a-reasoning-08-2025",
"command-a-vision-07-2025",
"command-r-plus-04-2024",
"command-r-plus",
"command-r-08-2024",
"command-r-03-2024",
"command-r",
"command",
"command-nightly",
"command-light",
"command-light-nightly",
]
name
class-attribute
instance-attribute
name = 'command-a-03-2025'
type
class-attribute
instance-attribute
type = 'CohereToolModel'
timeout
class-attribute
instance-attribute
timeout = 600.0
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
version
class-attribute
instance-attribute
version = '0.1.0'
include_usage
class-attribute
instance-attribute
include_usage = True
BASE_URL
class-attribute
instance-attribute
BASE_URL = None
predict
predict(
conversation,
toolkit=None,
temperature=0.3,
max_tokens=1024,
)
Generate a response for a conversation synchronously.
PARAMETER | DESCRIPTION |
---|---|
conversation
|
The conversation to generate a response for
TYPE:
|
toolkit
|
Optional toolkit containing available tools
TYPE:
|
temperature
|
Sampling temperature
TYPE:
|
max_tokens
|
Maximum number of tokens to generate
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Conversation
|
The updated conversation with the model's response
TYPE:
|
Source code in swarmauri_standard/llms/CohereToolModel.py
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
|
stream
stream(
conversation,
toolkit=None,
temperature=0.3,
max_tokens=1024,
)
Stream a response for a conversation synchronously.
PARAMETER | DESCRIPTION |
---|---|
conversation
|
The conversation to generate a response for
TYPE:
|
toolkit
|
Optional toolkit containing available tools
TYPE:
|
temperature
|
Sampling temperature
TYPE:
|
max_tokens
|
Maximum number of tokens to generate
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Iterator[str]
|
Iterator[str]: An iterator yielding response chunks |
Source code in swarmauri_standard/llms/CohereToolModel.py
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
apredict
async
apredict(
conversation,
toolkit=None,
temperature=0.3,
max_tokens=1024,
)
Generate a response for a conversation asynchronously.
PARAMETER | DESCRIPTION |
---|---|
conversation
|
The conversation to generate a response for
TYPE:
|
toolkit
|
Optional toolkit containing available tools
TYPE:
|
temperature
|
Sampling temperature
TYPE:
|
max_tokens
|
Maximum number of tokens to generate
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Conversation
|
The updated conversation with the model's response
TYPE:
|
Source code in swarmauri_standard/llms/CohereToolModel.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
|
astream
async
astream(
conversation,
toolkit=None,
temperature=0.3,
max_tokens=1024,
)
Stream a response for a conversation asynchronously.
PARAMETER | DESCRIPTION |
---|---|
conversation
|
The conversation to generate a response for
TYPE:
|
toolkit
|
Optional toolkit containing available tools
TYPE:
|
temperature
|
Sampling temperature
TYPE:
|
max_tokens
|
Maximum number of tokens to generate
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
AsyncIterator[str]
|
AsyncIterator[str]: An async iterator yielding response chunks |
Source code in swarmauri_standard/llms/CohereToolModel.py
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
|
batch
batch(
conversations,
toolkit=None,
temperature=0.3,
max_tokens=1024,
)
Process multiple conversations in batch mode synchronously.
This method takes a list of conversations and processes them sequentially using the predict method. Each conversation is processed independently with the same parameters.
PARAMETER | DESCRIPTION |
---|---|
conversations
|
A list of conversation objects to process
TYPE:
|
toolkit
|
The toolkit containing available tools for the model
TYPE:
|
temperature
|
The sampling temperature for response generation. Defaults to 0.3
TYPE:
|
max_tokens
|
The maximum number of tokens to generate for each response. Defaults to 1024
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Conversation]
|
List[Conversation]: A list of processed conversations with their respective responses |
Source code in swarmauri_standard/llms/CohereToolModel.py
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
|
abatch
async
abatch(
conversations,
toolkit=None,
temperature=0.3,
max_tokens=1024,
max_concurrent=5,
)
Process multiple conversations in batch mode asynchronously.
This method processes multiple conversations concurrently while limiting the maximum number of simultaneous requests using a semaphore. This helps prevent overwhelming the API service while still maintaining efficient processing.
PARAMETER | DESCRIPTION |
---|---|
conversations
|
A list of conversation objects to process
TYPE:
|
toolkit
|
The toolkit containing available tools for the model
TYPE:
|
temperature
|
The sampling temperature for response generation. Defaults to 0.3
TYPE:
|
max_tokens
|
The maximum number of tokens to generate for each response. Defaults to 1024
TYPE:
|
max_concurrent
|
The maximum number of conversations to process simultaneously. Defaults to 5
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Conversation]
|
List[Conversation]: A list of processed conversations with their respective responses |
Note
The max_concurrent parameter helps control API usage and prevent rate limiting while still allowing for parallel processing of multiple conversations.
Source code in swarmauri_standard/llms/CohereToolModel.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
|
get_allowed_models
get_allowed_models()
Query the LLMProvider API endpoint to get the list of allowed models.
RETURNS | DESCRIPTION |
---|---|
List[str]
|
List[str]: List of allowed model names from the API |
Source code in swarmauri_standard/llms/CohereToolModel.py
674 675 676 677 678 679 680 681 682 683 684 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|
add_allowed_model
add_allowed_model(model)
Add a new model to the list of allowed models.
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the model is already in the allowed models list. |
Source code in swarmauri_base/llms/LLMBase.py
36 37 38 39 40 41 42 43 44 45 |
|
remove_allowed_model
remove_allowed_model(model)
Remove a model from the list of allowed models.
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the model is not in the allowed models list. |
Source code in swarmauri_base/llms/LLMBase.py
47 48 49 50 51 52 53 54 55 56 |
|