Skip to content

Class swarmauri_standard.llms.GeminiProModel.GeminiProModel

swarmauri_standard.llms.GeminiProModel.GeminiProModel

GeminiProModel(api_key, **kwargs)

Bases: LLMBase

GeminiProModel is a class interface for interacting with the Gemini language model API.

ATTRIBUTE DESCRIPTION
api_key

API key for authentication with the Gemini API.

TYPE: str

allowed_models

List of allowed model names for selection.

TYPE: List[str]

name

Default name of the model in use.

TYPE: str

type

Type identifier for GeminiProModel.

TYPE: Literal

Provider resources: https://deepmind.google/technologies/gemini/pro/

Initializes the GeminiProModel object with the given API key.

PARAMETER DESCRIPTION
api_key

The API key for the GeminiProModel.

TYPE: SecretStr

Source code in swarmauri_standard/llms/GeminiProModel.py
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def __init__(self, api_key: SecretStr, **kwargs):
    """
    Initializes the GeminiProModel object with the given API key.

    Args:
        api_key (SecretStr): The API key for the GeminiProModel.
    """
    super().__init__(api_key=api_key, **kwargs)

    self._client = httpx.Client(
        base_url="https://generativelanguage.googleapis.com/v1beta",
        headers={"Content-Type": "application/json"},
        timeout=self.timeout,
    )

    self._async_client = httpx.AsyncClient(
        base_url="https://generativelanguage.googleapis.com/v1beta",
        headers={"Content-Type": "application/json"},
        timeout=self.timeout,
    )

api_key instance-attribute

api_key

allowed_models class-attribute instance-attribute

allowed_models = [
    "gemini-2.0-flash",
    "gemini-2.0-flash-lite",
    "gemini-2.0-pro-exp-02-05",
    "gemini-1.5-flash",
    "gemini-1.5-flash-8b",
    "gemini-1.5-pro",
]

name class-attribute instance-attribute

name = 'gemini-2.0-flash'

timeout class-attribute instance-attribute

timeout = 600.0

type class-attribute instance-attribute

type = 'GeminiProModel'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=LLM.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

include_usage class-attribute instance-attribute

include_usage = True

BASE_URL class-attribute instance-attribute

BASE_URL = None

predict

predict(conversation, temperature=0.7, max_tokens=25)

Generates a prediction for the given conversation using the specified parameters.

PARAMETER DESCRIPTION
conversation

The conversation object containing the history of messages.

TYPE: Conversation

temperature

The sampling temperature to use. Defaults to 0.7.

TYPE: float DEFAULT: 0.7

max_tokens

The maximum number of tokens to generate. Defaults to 256.

TYPE: int DEFAULT: 25

RETURNS DESCRIPTION
Conversation

The updated conversation object with the new message added.

TYPE: Conversation

RAISES DESCRIPTION
HTTPStatusError

If the HTTP request to the generation endpoint fails.

Source code in swarmauri_standard/llms/GeminiProModel.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
@retry_on_status_codes((429, 529), max_retries=1)
def predict(
    self,
    conversation: Conversation,
    temperature: float = 0.7,
    max_tokens: int = 25,
) -> Conversation:
    """
    Generates a prediction for the given conversation using the specified parameters.

    Args:
        conversation (Conversation): The conversation object containing the history of messages.
        temperature (float, optional): The sampling temperature to use. Defaults to 0.7.
        max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 256.

    Returns:
        Conversation: The updated conversation object with the new message added.

    Raises:
        httpx.HTTPStatusError: If the HTTP request to the generation endpoint fails.
    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    system_context = self._get_system_context(conversation.history)
    formatted_messages = self._format_messages(conversation.history)
    next_message = formatted_messages.pop()

    payload = {
        "contents": next_message,
        "generationConfig": generation_config,
        "safetySettings": self._safety_settings,
    }
    if system_context:
        payload["systemInstruction"] = system_context

    with DurationManager() as prompt_timer:
        response = self._client.post(
            f"/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
            json=payload,
        )
        response.raise_for_status()

    response_data = response.json()

    message_content = response_data["candidates"][0]["content"]["parts"][0]["text"]

    usage_data = response_data["usageMetadata"]

    if self.include_usage and usage_data:
        usage = self._prepare_usage_data(usage_data, prompt_timer.duration)
        conversation.add_message(AgentMessage(content=message_content, usage=usage))
    else:
        conversation.add_message(AgentMessage(content=message_content))

    return conversation

apredict async

apredict(conversation, temperature=0.7, max_tokens=256)

Asynchronously generates a response for a given conversation using the GeminiProModel.

PARAMETER DESCRIPTION
conversation

The conversation object containing the history of messages.

TYPE: Conversation

temperature

Sampling temperature for response generation. Defaults to 0.7.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum number of tokens in the generated response. Defaults to 256.

TYPE: int DEFAULT: 256

RETURNS DESCRIPTION
Conversation

The updated conversation object with the generated response added.

TYPE: Conversation

RAISES DESCRIPTION
HTTPStatusError

If the HTTP request to the generation endpoint fails.

Source code in swarmauri_standard/llms/GeminiProModel.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@retry_on_status_codes((429, 529), max_retries=1)
async def apredict(
    self,
    conversation: Conversation,
    temperature: float = 0.7,
    max_tokens: int = 256,
) -> Conversation:
    """
    Asynchronously generates a response for a given conversation using the GeminiProModel.

    Args:
        conversation (Conversation): The conversation object containing the history of messages.
        temperature (float, optional): Sampling temperature for response generation. Defaults to 0.7.
        max_tokens (int, optional): Maximum number of tokens in the generated response. Defaults to 256.

    Returns:
        Conversation: The updated conversation object with the generated response added.

    Raises:
        httpx.HTTPStatusError: If the HTTP request to the generation endpoint fails.
    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    system_context = self._get_system_context(conversation.history)
    formatted_messages = self._format_messages(conversation.history)
    next_message = formatted_messages.pop()

    payload = {
        "contents": next_message,
        "generationConfig": generation_config,
        "safetySettings": self._safety_settings,
    }
    if system_context:
        payload["systemInstruction"] = system_context

    with DurationManager() as prompt_timer:
        response = await self._async_client.post(
            f"/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
            json=payload,
        )
        response.raise_for_status()

    response_data = response.json()
    message_content = response_data["candidates"][0]["content"]["parts"][0]["text"]
    usage_data = response_data["usageMetadata"]

    if self.include_usage and usage_data:
        usage = self._prepare_usage_data(usage_data, prompt_timer.duration)
        conversation.add_message(AgentMessage(content=message_content, usage=usage))
    else:
        conversation.add_message(AgentMessage(content=message_content))

    return conversation

stream

stream(conversation, temperature=0.7, max_tokens=256)

Streams the response from the model based on the given conversation.

PARAMETER DESCRIPTION
conversation

The conversation object containing the history of messages.

TYPE: Conversation

temperature

The temperature setting for the generation. Defaults to 0.7.

TYPE: float DEFAULT: 0.7

max_tokens

The maximum number of tokens to generate. Defaults to 256.

TYPE: int DEFAULT: 256

YIELDS DESCRIPTION
str

Chunks of the generated response text.

TYPE:: str

RAISES DESCRIPTION
HTTPStatusError

If the HTTP request to the model fails.

Source code in swarmauri_standard/llms/GeminiProModel.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
@retry_on_status_codes((429, 529), max_retries=1)
def stream(
    self,
    conversation: Conversation,
    temperature: float = 0.7,
    max_tokens: int = 256,
) -> Iterator[str]:
    """
    Streams the response from the model based on the given conversation.

    Args:
        conversation (Conversation): The conversation object containing the history of messages.
        temperature (float, optional): The temperature setting for the generation. Defaults to 0.7.
        max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 256.

    Yields:
        str: Chunks of the generated response text.

    Raises:
        httpx.HTTPStatusError: If the HTTP request to the model fails.

    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    system_context = self._get_system_context(conversation.history)
    formatted_messages = self._format_messages(conversation.history)

    next_message = formatted_messages.pop()

    payload = {
        "contents": next_message,
        "generationConfig": generation_config,
        "safetySettings": self._safety_settings,
    }
    if system_context:
        payload["systemInstruction"] = system_context

    with DurationManager() as prompt_timer:
        response = self._client.post(
            f"/{self.name}:streamGenerateContent?alt=sse&key={self.api_key.get_secret_value()}",
            json=payload,
        )

        response.raise_for_status()

    full_response = ""
    with DurationManager() as completion_timer:
        for line in response.iter_lines():
            json_str = line.replace("data: ", "")
            if json_str:
                response_data = json.loads(json_str)
                chunk = response_data["candidates"][0]["content"]["parts"][0][
                    "text"
                ]
                full_response += chunk
                yield chunk

                if "usageMetadata" in response_data:
                    usage_data = response_data["usageMetadata"]

    if self.include_usage and usage_data:
        usage = self._prepare_usage_data(
            usage_data, prompt_timer.duration, completion_timer.duration
        )
        conversation.add_message(AgentMessage(content=full_response, usage=usage))
    else:
        conversation.add_message(AgentMessage(content=full_response))

astream async

astream(conversation, temperature=0.7, max_tokens=256)

Asynchronously streams generated content for a given conversation.

PARAMETER DESCRIPTION
conversation

The conversation object containing the history of messages.

TYPE: Conversation

temperature

The temperature for the generation process. Defaults to 0.7.

TYPE: float DEFAULT: 0.7

max_tokens

The maximum number of tokens to generate. Defaults to 256.

TYPE: int DEFAULT: 256

YIELDS DESCRIPTION
str

Chunks of generated content as they are received.

TYPE:: AsyncIterator[str]

RAISES DESCRIPTION
HTTPStatusError

If the HTTP request to the generation service fails.

Source code in swarmauri_standard/llms/GeminiProModel.py
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@retry_on_status_codes((429, 529), max_retries=1)
async def astream(
    self,
    conversation: Conversation,
    temperature: float = 0.7,
    max_tokens: int = 256,
) -> AsyncIterator[str]:
    """
    Asynchronously streams generated content for a given conversation.

    Args:
        conversation (Conversation): The conversation object containing the history of messages.
        temperature (float, optional): The temperature for the generation process. Defaults to 0.7.
        max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 256.

    Yields:
        str: Chunks of generated content as they are received.

    Raises:
        httpx.HTTPStatusError: If the HTTP request to the generation service fails.

    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    system_context = self._get_system_context(conversation.history)
    formatted_messages = self._format_messages(conversation.history)

    next_message = formatted_messages.pop()

    payload = {
        "contents": next_message,
        "generationConfig": generation_config,
        "safetySettings": self._safety_settings,
    }
    if system_context:
        payload["systemInstruction"] = system_context

    with DurationManager() as prompt_timer:
        response = await self._async_client.post(
            f"/{self.name}:streamGenerateContent?alt=sse&key={self.api_key.get_secret_value()}",
            json=payload,
        )
        response.raise_for_status()

    full_response = ""
    with DurationManager() as completion_timer:
        async for line in response.aiter_lines():
            json_str = line.replace("data: ", "")
            if json_str:
                response_data = json.loads(json_str)
                chunk = response_data["candidates"][0]["content"]["parts"][0][
                    "text"
                ]
                full_response += chunk
                yield chunk

                if "usageMetadata" in response_data:
                    usage_data = response_data["usageMetadata"]

    if self.include_usage and usage_data:
        usage = self._prepare_usage_data(
            usage_data, prompt_timer.duration, completion_timer.duration
        )
        conversation.add_message(AgentMessage(content=full_response, usage=usage))
    else:
        conversation.add_message(AgentMessage(content=full_response))

batch

batch(conversations, temperature=0.7, max_tokens=256)

Synchronously process multiple conversations.

PARAMETER DESCRIPTION
conversations

A list of Conversation objects to be processed.

TYPE: List[Conversation]

temperature

The sampling temperature to use. Defaults to 0.7.

TYPE: float DEFAULT: 0.7

max_tokens

The maximum number of tokens to generate. Defaults to 256.

TYPE: int DEFAULT: 256

RETURNS DESCRIPTION
List

A list of predictions for each conversation.

TYPE: List

Source code in swarmauri_standard/llms/GeminiProModel.py
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def batch(
    self,
    conversations: List[Conversation],
    temperature: float = 0.7,
    max_tokens: int = 256,
) -> List:
    """
    Synchronously process multiple conversations.

    Args:
        conversations (List[Conversation]): A list of Conversation objects to be processed.
        temperature (float, optional): The sampling temperature to use. Defaults to 0.7.
        max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 256.

    Returns:
        List: A list of predictions for each conversation.
    """
    return [
        self.predict(
            conv,
            temperature=temperature,
            max_tokens=max_tokens,
        )
        for conv in conversations
    ]

abatch async

abatch(
    conversations,
    temperature=0.7,
    max_tokens=256,
    max_concurrent=5,
)

Asynchronously processes a batch of conversations using the apredict method.

PARAMETER DESCRIPTION
conversations

A list of Conversation objects to be processed.

TYPE: List[Conversation]

temperature

The temperature parameter for the prediction. Defaults to 0.7.

TYPE: float DEFAULT: 0.7

max_tokens

The maximum number of tokens for the prediction. Defaults to 256.

TYPE: int DEFAULT: 256

max_concurrent

The maximum number of concurrent tasks. Defaults to 5.

TYPE: int DEFAULT: 5

RETURNS DESCRIPTION
List

A list of results from the apredict method for each conversation.

TYPE: List

Source code in swarmauri_standard/llms/GeminiProModel.py
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def abatch(
    self,
    conversations: List[Conversation],
    temperature: float = 0.7,
    max_tokens: int = 256,
    max_concurrent: int = 5,
) -> List:
    """
    Asynchronously processes a batch of conversations using the `apredict` method.

    Args:
        conversations (List[Conversation]): A list of Conversation objects to be processed.
        temperature (float, optional): The temperature parameter for the prediction. Defaults to 0.7.
        max_tokens (int, optional): The maximum number of tokens for the prediction. Defaults to 256.
        max_concurrent (int, optional): The maximum number of concurrent tasks. Defaults to 5.

    Returns:
        List: A list of results from the `apredict` method for each conversation.
    """
    semaphore = asyncio.Semaphore(max_concurrent)

    async def process_conversation(conv) -> Conversation:
        async with semaphore:
            return await self.apredict(
                conv,
                temperature=temperature,
                max_tokens=max_tokens,
            )

    tasks = [process_conversation(conv) for conv in conversations]
    return await asyncio.gather(*tasks)

get_allowed_models

get_allowed_models()

Queries the LLMProvider API endpoint to retrieve the list of allowed models.

RETURNS DESCRIPTION
List[str]

List[str]: A list of allowed model names.

Source code in swarmauri_standard/llms/GeminiProModel.py
483
484
485
486
487
488
489
490
491
492
493
494
def get_allowed_models(self) -> List[str]:
    """
    Queries the LLMProvider API endpoint to retrieve the list of allowed models.

    Returns:
        List[str]: A list of allowed model names.
    """
    response = self._client.get(
        f"https://generativelanguage.googleapis.com/v1beta/models?key={self.api_key.get_secret_value()}"
    )
    response.raise_for_status()
    return [model["name"] for model in response.json()["models"]]

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

add_allowed_model

add_allowed_model(model)

Add a new model to the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is already in the allowed models list.

Source code in swarmauri_base/llms/LLMBase.py
36
37
38
39
40
41
42
43
44
45
def add_allowed_model(self, model: str) -> None:
    """
    Add a new model to the list of allowed models.

    Raises:
        ValueError: If the model is already in the allowed models list.
    """
    if model in self.allowed_models:
        raise ValueError(f"Model '{model}' is already allowed.")
    self.allowed_models.append(model)

remove_allowed_model

remove_allowed_model(model)

Remove a model from the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is not in the allowed models list.

Source code in swarmauri_base/llms/LLMBase.py
47
48
49
50
51
52
53
54
55
56
def remove_allowed_model(self, model: str) -> None:
    """
    Remove a model from the list of allowed models.

    Raises:
        ValueError: If the model is not in the allowed models list.
    """
    if model not in self.allowed_models:
        raise ValueError(f"Model '{model}' is not in the allowed models list.")
    self.allowed_models.remove(model)