Skip to content

Class swarmauri_standard.logger_formatters.IndentedFormatter.IndentedFormatter

swarmauri_standard.logger_formatters.IndentedFormatter.IndentedFormatter

Bases: FormatterBase

A formatter that adds indentation to each line of a log message.

This formatter preserves the original message formatting while adding indentation to improve readability of multi-line log messages.

ATTRIBUTE DESCRIPTION
indent_width

Number of spaces to use for indentation.

TYPE: int

indent_first_line

Whether to indent the first line of the message.

TYPE: bool

format

The log message format string.

TYPE: str

date_format

The date format string for timestamps.

TYPE: Optional[str]

indent_width class-attribute instance-attribute

indent_width = 4

indent_first_line class-attribute instance-attribute

indent_first_line = False

format class-attribute instance-attribute

format = '[%(name)s][%(levelname)s] %(message)s'

date_format class-attribute instance-attribute

date_format = None

type class-attribute instance-attribute

type = 'ObserveBase'

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

compile_formatter

compile_formatter()

Create and return a logging.Formatter with indentation functionality.

RETURNS DESCRIPTION
Formatter

A custom logging.Formatter that adds indentation to log messages.

Source code in swarmauri_standard/logger_formatters/IndentedFormatter.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def compile_formatter(self) -> logging.Formatter:
    """
    Create and return a logging.Formatter with indentation functionality.

    Returns:
        A custom logging.Formatter that adds indentation to log messages.
    """
    # Create a custom formatter that inherits from logging.Formatter
    parent_formatter = super().compile_formatter()

    # Create a wrapper class to modify the formatting behavior
    class IndentedLoggingFormatter(logging.Formatter):
        def __init__(self, parent_fmt, indent_width, indent_first_line):
            self.parent_formatter = parent_fmt
            self.indent_width = indent_width
            self.indent_first_line = indent_first_line
            # Initialize with the same format as the parent
            super().__init__(fmt=parent_fmt._fmt, datefmt=parent_fmt.datefmt)

        def format(self, record):
            # Get the formatted message from the parent formatter
            formatted_msg = self.parent_formatter.format(record)

            # Split the message into lines
            lines = formatted_msg.splitlines()

            # Create the indentation string
            indent = " " * self.indent_width

            # Apply indentation to lines
            if len(lines) > 0:
                # Process first line
                if self.indent_first_line:
                    lines[0] = indent + lines[0]

                # Process subsequent lines
                for i in range(1, len(lines)):
                    lines[i] = indent + lines[i]

            # Join the lines back together
            return "\n".join(lines)

    # Return the custom formatter instance
    return IndentedLoggingFormatter(
        parent_formatter, self.indent_width, self.indent_first_line
    )

model_post_init

model_post_init(*args, **kwargs)

Post-initialization processing.

Validates that indent_width is a positive integer.

PARAMETER DESCRIPTION
*args

Variable length argument list.

DEFAULT: ()

**kwargs

Arbitrary keyword arguments.

DEFAULT: {}

RAISES DESCRIPTION
ValueError

If indent_width is not a positive integer.

Source code in swarmauri_standard/logger_formatters/IndentedFormatter.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def model_post_init(self, *args, **kwargs):
    """
    Post-initialization processing.

    Validates that indent_width is a positive integer.

    Args:
        *args: Variable length argument list.
        **kwargs: Arbitrary keyword arguments.

    Raises:
        ValueError: If indent_width is not a positive integer.
    """
    # Validate indent_width
    if self.indent_width < 0:
        raise ValueError("indent_width must be a positive integer")

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)