Skip to content

Class swarmauri_standard.logger_formatters.KeyValueFormatter.KeyValueFormatter

swarmauri_standard.logger_formatters.KeyValueFormatter.KeyValueFormatter

Bases: FormatterBase

A formatter that renders log record attributes as key=value pairs.

This formatter outputs log messages in a structured format where each attribute is represented as a key-value pair, making it easier to parse logs programmatically.

ATTRIBUTE DESCRIPTION
key_value_separator

Character used to separate keys from values

TYPE: str

pair_delimiter

Character used to separate key-value pairs

TYPE: str

include_extra

Whether to include extra attributes from the LogRecord

TYPE: bool

fields

List of fields to include in the output, in the desired order

TYPE: List[str]

format

The format string (constructed dynamically)

TYPE: str

date_format

Format for timestamps

TYPE: str

key_value_separator class-attribute instance-attribute

key_value_separator = '='

pair_delimiter class-attribute instance-attribute

pair_delimiter = ' '

include_extra class-attribute instance-attribute

include_extra = False

fields class-attribute instance-attribute

fields = ['levelname', 'name', 'message']

format class-attribute instance-attribute

format = '%(message)s'

date_format class-attribute instance-attribute

date_format = '%Y-%m-%d %H:%M:%S'

type class-attribute instance-attribute

type = 'ObserveBase'

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

model_post_init

model_post_init(*args, **kwargs)

Initialize the formatter after the model is created.

This method constructs the format string based on the configured fields and other parameters.

Source code in swarmauri_standard/logger_formatters/KeyValueFormatter.py
33
34
35
36
37
38
39
40
41
42
def model_post_init(self, *args, **kwargs):
    """
    Initialize the formatter after the model is created.

    This method constructs the format string based on the configured fields
    and other parameters.
    """
    # The base format is constructed dynamically in compile_formatter
    # We just ensure format exists for compatibility with base class
    self.format = "%(message)s"

compile_formatter

compile_formatter()

Create and return a custom logging.Formatter that formats records as key-value pairs.

RETURNS DESCRIPTION
Formatter

A logging Formatter instance that uses our custom format method

Source code in swarmauri_standard/logger_formatters/KeyValueFormatter.py
44
45
46
47
48
49
50
51
52
53
54
def compile_formatter(self) -> logging.Formatter:
    """
    Create and return a custom logging.Formatter that formats records as key-value pairs.

    Returns:
        A logging Formatter instance that uses our custom format method
    """
    # Create a custom formatter that uses our format_record method
    formatter = logging.Formatter(self.format, self.date_format)
    formatter.format = self.format_record
    return formatter

format_record

format_record(record)

Format a log record as key-value pairs.

PARAMETER DESCRIPTION
record

The LogRecord to format

TYPE: LogRecord

RETURNS DESCRIPTION
str

A formatted string with key-value pairs

Source code in swarmauri_standard/logger_formatters/KeyValueFormatter.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def format_record(self, record: LogRecord) -> str:
    """
    Format a log record as key-value pairs.

    Args:
        record: The LogRecord to format

    Returns:
        A formatted string with key-value pairs
    """
    # Dictionary to store the key-value pairs
    output_parts = []

    # Process the standard fields in the specified order
    for field in self.fields:
        if field == "message":
            # Special handling for message to ensure it's formatted
            value = record.getMessage()
        elif hasattr(record, field):
            value = getattr(record, field)
        else:
            continue

        # Add the key-value pair to our output
        output_parts.append(f"{field}{self.key_value_separator}{value}")

    # Include any extra attributes if specified
    if self.include_extra and hasattr(record, "extra"):
        extra = record.extra
        if isinstance(extra, dict):
            for key, value in extra.items():
                if key not in self.fields:
                    output_parts.append(f"{key}{self.key_value_separator}{value}")

    # Include any non-standard attributes directly attached to the LogRecord
    if self.include_extra:
        for key, value in record.__dict__.items():
            # Skip standard attributes and internal ones (starting with _)
            if (
                key not in self.fields
                and not key.startswith("_")
                and key
                not in (
                    "args",
                    "exc_info",
                    "exc_text",
                    "stack_info",
                    "lineno",
                    "funcName",
                    "created",
                    "msecs",
                    "relativeCreated",
                    "levelno",
                    "msg",
                )
            ):
                output_parts.append(f"{key}{self.key_value_separator}{value}")

    # Join all parts with the specified delimiter
    return self.pair_delimiter.join(output_parts)

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)