Skip to content

Class swarmauri_standard.logger_handlers.EmailLoggingHandler.EmailLoggingHandler

swarmauri_standard.logger_handlers.EmailLoggingHandler.EmailLoggingHandler

Bases: HandlerBase

A handler that sends log messages via email using SMTP.

This handler extends the HandlerBase class to provide email logging functionality. It uses Python's SMTPHandler to send log records to specified recipients.

type class-attribute instance-attribute

type = 'EmailLoggingHandler'

mailhost class-attribute instance-attribute

mailhost = 'localhost'

credentials class-attribute instance-attribute

credentials = None

secure class-attribute instance-attribute

secure = None

timeout class-attribute instance-attribute

timeout = None

fromaddr class-attribute instance-attribute

fromaddr = 'logger@example.com'

toaddrs class-attribute instance-attribute

toaddrs = []

subject class-attribute instance-attribute

subject = 'Logging Message'

mail_from_display_name class-attribute instance-attribute

mail_from_display_name = None

send_empty_entries class-attribute instance-attribute

send_empty_entries = False

html class-attribute instance-attribute

html = False

formatter class-attribute instance-attribute

formatter = None

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

level class-attribute instance-attribute

level = INFO

compile_handler

compile_handler()

Compiles and returns an SMTPHandler configured with the provided settings.

RETURNS DESCRIPTION
Handler

logging.Handler: A configured SMTPHandler instance.

Source code in swarmauri_standard/logger_handlers/EmailLoggingHandler.py
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def compile_handler(self) -> logging.Handler:
    """
    Compiles and returns an SMTPHandler configured with the provided settings.

    Returns:
        logging.Handler: A configured SMTPHandler instance.
    """
    # Validate required fields
    if not self.toaddrs:
        raise ValueError("Email recipients (toaddrs) must be specified")

    # Prepare from address with optional display name
    from_addr = self.fromaddr
    if self.mail_from_display_name:
        from_addr = formataddr((self.mail_from_display_name, self.fromaddr))

    # Create the SMTP handler
    handler = logging.handlers.SMTPHandler(
        mailhost=self.mailhost,
        fromaddr=from_addr,
        toaddrs=self.toaddrs,
        subject=self.subject,
        credentials=self.credentials,
        secure=self.secure,
        timeout=self.timeout,
    )

    # Set the log level
    handler.setLevel(self.level)

    # Configure the formatter
    if self.formatter:
        if isinstance(self.formatter, str):
            handler.setFormatter(logging.Formatter(self.formatter))
        else:
            handler.setFormatter(self.formatter.compile_formatter())
    else:
        # Default HTML or plain text formatter
        if self.html:
            default_formatter = logging.Formatter(
                "<html><body><h2>%(levelname)s</h2>"
                "<p><b>Logger:</b> %(name)s<br>"
                "<b>Time:</b> %(asctime)s<br>"
                "<b>Message:</b> %(message)s</p>"
                "</body></html>",
                "%Y-%m-%d %H:%M:%S",
            )
        else:
            default_formatter = logging.Formatter(
                "[%(asctime)s][%(name)s][%(levelname)s] %(message)s",
                "%Y-%m-%d %H:%M:%S",
            )
        handler.setFormatter(default_formatter)

    # Handle HTML content type if needed
    if self.html:
        # Add HTML content type header to emails
        # This is done by monkey patching the getSubject method
        original_get_subject = handler.getSubject

        def get_subject_with_content_type(record):
            subject = original_get_subject(record)
            return f"{subject}\nContent-Type: text/html"

        handler.getSubject = get_subject_with_content_type

    # Configure to not send empty log entries if specified
    if not self.send_empty_entries:
        original_emit = handler.emit

        def emit_if_not_empty(record):
            if record.getMessage().strip():
                original_emit(record)

        handler.emit = emit_if_not_empty

    return handler

get_configuration

get_configuration()

Returns the configuration of this handler.

RETURNS DESCRIPTION
Dict[str, Any]

Dict[str, Any]: A dictionary containing the configuration.

Source code in swarmauri_standard/logger_handlers/EmailLoggingHandler.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def get_configuration(self) -> Dict[str, Any]:
    """
    Returns the configuration of this handler.

    Returns:
        Dict[str, Any]: A dictionary containing the configuration.
    """
    return {
        "type": self.type,
        "level": self.level,
        "mailhost": self.mailhost,
        "fromaddr": self.fromaddr,
        "toaddrs": self.toaddrs,
        "subject": self.subject,
        "credentials": "***REDACTED***" if self.credentials else None,
        "secure": True if isinstance(self.secure, tuple) else self.secure,
        "html": self.html,
        "mail_from_display_name": self.mail_from_display_name,
        "send_empty_entries": self.send_empty_entries,
        "formatter": str(self.formatter) if self.formatter else None,
    }

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)