Skip to content

Class swarmauri_standard.logger_handlers.MemoryLoggingHandler.MemoryLoggingHandler

swarmauri_standard.logger_handlers.MemoryLoggingHandler.MemoryLoggingHandler

MemoryLoggingHandler(**data)

Bases: HandlerBase

A handler that stores logging records in memory until a capacity is reached, then flushes to a target handler.

This handler buffers log records in memory and flushes them to a target handler when the buffer is full or when a record with a level greater than or equal to flushLevel is seen.

Initialize the MemoryLoggingHandler with the provided configuration.

PARAMETER DESCRIPTION
**data

Configuration options for the handler.

TYPE: Any DEFAULT: {}

Source code in swarmauri_standard/logger_handlers/MemoryLoggingHandler.py
26
27
28
29
30
31
32
33
34
35
def __init__(self, **data: Any):
    """
    Initialize the MemoryLoggingHandler with the provided configuration.

    Args:
        **data: Configuration options for the handler.
    """
    super().__init__(**data)
    self._memory_handler = None
    self._target_handler = None

type class-attribute instance-attribute

type = 'MemoryLoggingHandler'

capacity class-attribute instance-attribute

capacity = 100

flushLevel class-attribute instance-attribute

flushLevel = ERROR

target class-attribute instance-attribute

target = None

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

level class-attribute instance-attribute

level = INFO

formatter class-attribute instance-attribute

formatter = None

compile_handler

compile_handler()

Compiles a memory logging handler using the specified capacity, flushLevel, and target handler.

RETURNS DESCRIPTION
Handler

logging.Handler: The configured memory handler.

RAISES DESCRIPTION
ValueError

If no target handler is specified.

Source code in swarmauri_standard/logger_handlers/MemoryLoggingHandler.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def compile_handler(self) -> logging.Handler:
    """
    Compiles a memory logging handler using the specified capacity,
    flushLevel, and target handler.

    Returns:
        logging.Handler: The configured memory handler.

    Raises:
        ValueError: If no target handler is specified.
    """
    if not self.target:
        raise ValueError(
            "MemoryLoggingHandler requires a target handler for flushing records"
        )

    # Resolve the target handler
    if isinstance(self.target, str):
        # This is a placeholder for resolving handler by name
        # In a real implementation, you would look up the handler by name
        raise ValueError(
            f"Target handler resolution by name '{self.target}' not implemented"
        )
    else:
        self._target_handler = self.target.compile_handler()

    # Create the memory handler with the target
    self._memory_handler = MemoryHandler(
        capacity=self.capacity,
        flushLevel=self.flushLevel,
        target=self._target_handler,
    )
    self._memory_handler.setLevel(self.level)

    # Set formatter if provided
    if self.formatter:
        if isinstance(self.formatter, str):
            self._memory_handler.setFormatter(logging.Formatter(self.formatter))
        else:
            self._memory_handler.setFormatter(self.formatter.compile_formatter())
    else:
        default_formatter = logging.Formatter(
            "[%(name)s][%(levelname)s] %(message)s"
        )
        self._memory_handler.setFormatter(default_formatter)

    return self._memory_handler

flush

flush()

Manually flush all buffered log records to the target handler.

Source code in swarmauri_standard/logger_handlers/MemoryLoggingHandler.py
85
86
87
88
89
90
def flush(self) -> None:
    """
    Manually flush all buffered log records to the target handler.
    """
    if self._memory_handler:
        self._memory_handler.flush()

close

close()

Close the memory handler and its target handler.

Source code in swarmauri_standard/logger_handlers/MemoryLoggingHandler.py
92
93
94
95
96
97
98
99
def close(self) -> None:
    """
    Close the memory handler and its target handler.
    """
    if self._memory_handler:
        self._memory_handler.close()
    if self._target_handler:
        self._target_handler.close()

setTarget

setTarget(target_handler)

Set a new target handler for this memory handler.

PARAMETER DESCRIPTION
target_handler

The new target handler to use for flushing.

TYPE: Handler

Source code in swarmauri_standard/logger_handlers/MemoryLoggingHandler.py
101
102
103
104
105
106
107
108
109
110
def setTarget(self, target_handler: logging.Handler) -> None:
    """
    Set a new target handler for this memory handler.

    Args:
        target_handler: The new target handler to use for flushing.
    """
    if self._memory_handler:
        self._memory_handler.setTarget(target_handler)
    self._target_handler = target_handler

to_dict

to_dict()

Convert the handler configuration to a dictionary.

RETURNS DESCRIPTION
Dict[str, Any]

Dict[str, Any]: Dictionary representation of the handler.

Source code in swarmauri_standard/logger_handlers/MemoryLoggingHandler.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def to_dict(self) -> Dict[str, Any]:
    """
    Convert the handler configuration to a dictionary.

    Returns:
        Dict[str, Any]: Dictionary representation of the handler.
    """
    # Start with base attributes
    result = {
        "type": self.type,
        "level": self.level,
        "formatter": str(self.formatter) if self.formatter else None,
    }

    # Add MemoryLoggingHandler specific attributes
    result.update(
        {
            "capacity": self.capacity,
            "flushLevel": self.flushLevel,
            "target": self.target.to_dict()
            if hasattr(self.target, "to_dict")
            else self.target,
        }
    )
    return result

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)