Skip to content

Class swarmauri_standard.metrics.AbsoluteValueMetric.AbsoluteValueMetric

swarmauri_standard.metrics.AbsoluteValueMetric.AbsoluteValueMetric

Bases: MetricBase

Implementation of a metric based on absolute value difference.

This is the simplest valid metric, using subtraction and the absolute value to calculate distance between real numbers.

Attributes

type : Literal["AbsoluteValueMetric"] The type identifier for this metric implementation. resource : str, optional The resource type, defaults to METRIC.

type class-attribute instance-attribute

type = 'AbsoluteValueMetric'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = METRIC.value

version class-attribute instance-attribute

version = '0.1.0'

distance

distance(x, y)

Calculate the distance between two scalar values using absolute difference.

Parameters

x : MetricInput First scalar value y : MetricInput Second scalar value

Returns

float The absolute difference between x and y

Raises

TypeError If inputs are not scalar numeric values

Source code in swarmauri_standard/metrics/AbsoluteValueMetric.py
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def distance(self, x: MetricInput, y: MetricInput) -> float:
    """
    Calculate the distance between two scalar values using absolute difference.

    Parameters
    ----------
    x : MetricInput
        First scalar value
    y : MetricInput
        Second scalar value

    Returns
    -------
    float
        The absolute difference between x and y

    Raises
    ------
    TypeError
        If inputs are not scalar numeric values
    """
    logger.debug(f"Calculating absolute value distance between {x} and {y}")

    # Validate inputs are scalar numeric values
    if not isinstance(x, (int, float)) or not isinstance(y, (int, float)):
        logger.error(f"Invalid input types: x is {type(x)}, y is {type(y)}")
        raise TypeError("AbsoluteValueMetric requires scalar numeric inputs")

    # Calculate absolute difference
    return abs(x - y)

distances

distances(x, y)

Calculate distances between collections of scalar values.

Parameters

x : Union[MetricInput, MetricInputCollection] First collection of scalar values y : Union[MetricInput, MetricInputCollection] Second collection of scalar values

Returns

Union[List[float], IVector, IMatrix] Vector of distances if one of the inputs is a single value, or a matrix of pairwise distances otherwise

Raises

TypeError If inputs are not collections of scalar values ValueError If input collections have incompatible shapes

Source code in swarmauri_standard/metrics/AbsoluteValueMetric.py
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def distances(
    self,
    x: Union[MetricInput, MetricInputCollection],
    y: Union[MetricInput, MetricInputCollection],
) -> Union[List[float], IVector, IMatrix]:
    """
    Calculate distances between collections of scalar values.

    Parameters
    ----------
    x : Union[MetricInput, MetricInputCollection]
        First collection of scalar values
    y : Union[MetricInput, MetricInputCollection]
        Second collection of scalar values

    Returns
    -------
    Union[List[float], IVector, IMatrix]
        Vector of distances if one of the inputs is a single value,
        or a matrix of pairwise distances otherwise

    Raises
    ------
    TypeError
        If inputs are not collections of scalar values
    ValueError
        If input collections have incompatible shapes
    """
    logger.debug("Calculating distances between collections")

    # Convert inputs to lists for uniform processing
    x_values = self._to_list(x)
    y_values = self._to_list(y)

    # If one input is a single value and the other is a collection
    if len(x_values) == 1 and len(y_values) > 1:
        return [self.distance(x_values[0], y_val) for y_val in y_values]
    elif len(y_values) == 1 and len(x_values) > 1:
        return [self.distance(x_val, y_values[0]) for x_val in x_values]

    # Both inputs are collections - return matrix of pairwise distances
    return [
        [self.distance(x_val, y_val) for y_val in y_values] for x_val in x_values
    ]

check_non_negativity

check_non_negativity(x, y)

Check if the metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

This is always true for absolute value difference.

Parameters

x : MetricInput First scalar value y : MetricInput Second scalar value

Returns

bool True (absolute value is always non-negative)

Source code in swarmauri_standard/metrics/AbsoluteValueMetric.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def check_non_negativity(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

    This is always true for absolute value difference.

    Parameters
    ----------
    x : MetricInput
        First scalar value
    y : MetricInput
        Second scalar value

    Returns
    -------
    bool
        True (absolute value is always non-negative)
    """
    logger.debug(f"Checking non-negativity axiom for {x} and {y}")
    dist = self.distance(x, y)
    # Absolute value is always non-negative
    return dist >= 0

check_identity_of_indiscernibles

check_identity_of_indiscernibles(x, y)

Check if the metric satisfies the identity of indiscernibles axiom: d(x,y) = 0 if and only if x = y.

Parameters

x : MetricInput First scalar value y : MetricInput Second scalar value

Returns

bool True if the axiom is satisfied

Source code in swarmauri_standard/metrics/AbsoluteValueMetric.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def check_identity_of_indiscernibles(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the metric satisfies the identity of indiscernibles axiom:
    d(x,y) = 0 if and only if x = y.

    Parameters
    ----------
    x : MetricInput
        First scalar value
    y : MetricInput
        Second scalar value

    Returns
    -------
    bool
        True if the axiom is satisfied
    """
    logger.debug(f"Checking identity of indiscernibles axiom for {x} and {y}")
    dist = self.distance(x, y)

    # Check if distance is 0 iff x equals y
    return (dist == 0 and x == y) or (dist > 0 and x != y)

check_symmetry

check_symmetry(x, y)

Check if the metric satisfies the symmetry axiom: d(x,y) = d(y,x).

Parameters

x : MetricInput First scalar value y : MetricInput Second scalar value

Returns

bool True if the axiom is satisfied

Source code in swarmauri_standard/metrics/AbsoluteValueMetric.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def check_symmetry(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the metric satisfies the symmetry axiom: d(x,y) = d(y,x).

    Parameters
    ----------
    x : MetricInput
        First scalar value
    y : MetricInput
        Second scalar value

    Returns
    -------
    bool
        True if the axiom is satisfied
    """
    logger.debug(f"Checking symmetry axiom for {x} and {y}")

    # Calculate distances in both directions
    dist_xy = self.distance(x, y)
    dist_yx = self.distance(y, x)

    # Check if distances are equal (allowing for small floating-point errors)
    return abs(dist_xy - dist_yx) < 1e-10

check_triangle_inequality

check_triangle_inequality(x, y, z)

Check if the metric satisfies the triangle inequality axiom: d(x,z) ≤ d(x,y) + d(y,z).

Parameters

x : MetricInput First scalar value y : MetricInput Second scalar value z : MetricInput Third scalar value

Returns

bool True if the axiom is satisfied

Source code in swarmauri_standard/metrics/AbsoluteValueMetric.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def check_triangle_inequality(
    self, x: MetricInput, y: MetricInput, z: MetricInput
) -> bool:
    """
    Check if the metric satisfies the triangle inequality axiom:
    d(x,z) ≤ d(x,y) + d(y,z).

    Parameters
    ----------
    x : MetricInput
        First scalar value
    y : MetricInput
        Second scalar value
    z : MetricInput
        Third scalar value

    Returns
    -------
    bool
        True if the axiom is satisfied
    """
    logger.debug(f"Checking triangle inequality axiom for {x}, {y}, and {z}")

    # Calculate all three distances
    dist_xy = self.distance(x, y)
    dist_yz = self.distance(y, z)
    dist_xz = self.distance(x, z)

    # Check triangle inequality (with small tolerance for floating-point errors)
    return dist_xz <= dist_xy + dist_yz + 1e-10

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger