Skip to content

Class swarmauri_standard.metrics.DiscreteMetric.DiscreteMetric

swarmauri_standard.metrics.DiscreteMetric.DiscreteMetric

Bases: MetricBase

Discrete metric implementation.

This metric returns 1 if two points are different and 0 if they are the same. It works with any hashable types and satisfies all metric axioms: - Non-negativity - Identity of indiscernibles - Symmetry - Triangle inequality

The discrete metric is also known as the "trivial metric" or "0-1 metric".

type class-attribute instance-attribute

type = 'DiscreteMetric'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = METRIC.value

version class-attribute instance-attribute

version = '0.1.0'

distance

distance(x, y)

Calculate the distance between two points: 1 if different, 0 if same.

Parameters

x : MetricInput First point (must be hashable) y : MetricInput Second point (must be hashable)

Returns

float 0.0 if x equals y, 1.0 otherwise

Raises

TypeError If inputs are not hashable

Source code in swarmauri_standard/metrics/DiscreteMetric.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def distance(self, x: MetricInput, y: MetricInput) -> float:
    """
    Calculate the distance between two points: 1 if different, 0 if same.

    Parameters
    ----------
    x : MetricInput
        First point (must be hashable)
    y : MetricInput
        Second point (must be hashable)

    Returns
    -------
    float
        0.0 if x equals y, 1.0 otherwise

    Raises
    ------
    TypeError
        If inputs are not hashable
    """
    logger.debug(f"Calculating discrete distance between {x} and {y}")

    # Check if inputs are hashable
    try:
        hash(x)
        hash(y)
    except TypeError:
        error_msg = f"Inputs must be hashable, got {type(x)} and {type(y)}"
        logger.error(error_msg)
        raise TypeError(error_msg)

    # Return 0 if equal, 1 otherwise
    return 0.0 if x == y else 1.0

distances

distances(x, y)

Calculate distances between collections of points.

Parameters

x : Union[MetricInput, MetricInputCollection] First collection of points y : Union[MetricInput, MetricInputCollection] Second collection of points

Returns

Union[List[float], IVector, IMatrix] Matrix of distances between points in x and y

Raises

TypeError If inputs are not iterable or contain non-hashable elements

Source code in swarmauri_standard/metrics/DiscreteMetric.py
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
def distances(
    self,
    x: Union[MetricInput, MetricInputCollection],
    y: Union[MetricInput, MetricInputCollection],
) -> Union[List[float], IVector, IMatrix]:
    """
    Calculate distances between collections of points.

    Parameters
    ----------
    x : Union[MetricInput, MetricInputCollection]
        First collection of points
    y : Union[MetricInput, MetricInputCollection]
        Second collection of points

    Returns
    -------
    Union[List[float], IVector, IMatrix]
        Matrix of distances between points in x and y

    Raises
    ------
    TypeError
        If inputs are not iterable or contain non-hashable elements
    """
    logger.debug("Calculating discrete distances between collections")

    try:
        # Convert inputs to lists if they're not already
        x_list = list(x) if not isinstance(x, (int, float)) else [x]
        y_list = list(y) if not isinstance(y, (int, float)) else [y]

        # Create a distance matrix
        result = np.zeros((len(x_list), len(y_list)))

        # Fill the distance matrix
        for i, x_val in enumerate(x_list):
            for j, y_val in enumerate(y_list):
                result[i, j] = self.distance(x_val, y_val)

        return result

    except TypeError as e:
        error_msg = f"Error calculating distances: {str(e)}"
        logger.error(error_msg)
        raise TypeError(error_msg)

check_non_negativity

check_non_negativity(x, y)

Check if the metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

Always returns True for DiscreteMetric as distances are either 0 or 1.

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

bool True (always satisfied for discrete metric)

Source code in swarmauri_standard/metrics/DiscreteMetric.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def check_non_negativity(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

    Always returns True for DiscreteMetric as distances are either 0 or 1.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    bool
        True (always satisfied for discrete metric)
    """
    logger.debug(f"Checking non-negativity axiom for {x} and {y}")
    # Distance is always 0 or 1, so always non-negative
    return True

check_identity_of_indiscernibles

check_identity_of_indiscernibles(x, y)

Check if the metric satisfies the identity of indiscernibles axiom: d(x,y) = 0 if and only if x = y.

Always returns True for DiscreteMetric by definition.

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

bool True (always satisfied for discrete metric)

Source code in swarmauri_standard/metrics/DiscreteMetric.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def check_identity_of_indiscernibles(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the metric satisfies the identity of indiscernibles axiom:
    d(x,y) = 0 if and only if x = y.

    Always returns True for DiscreteMetric by definition.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    bool
        True (always satisfied for discrete metric)
    """
    logger.debug(f"Checking identity of indiscernibles axiom for {x} and {y}")
    # By definition, distance is 0 if and only if x == y
    return True

check_symmetry

check_symmetry(x, y)

Check if the metric satisfies the symmetry axiom: d(x,y) = d(y,x).

Always returns True for DiscreteMetric as equality is symmetric.

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

bool True (always satisfied for discrete metric)

Source code in swarmauri_standard/metrics/DiscreteMetric.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def check_symmetry(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the metric satisfies the symmetry axiom: d(x,y) = d(y,x).

    Always returns True for DiscreteMetric as equality is symmetric.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    bool
        True (always satisfied for discrete metric)
    """
    logger.debug(f"Checking symmetry axiom for {x} and {y}")
    # x == y is symmetric, so the discrete metric is symmetric
    return True

check_triangle_inequality

check_triangle_inequality(x, y, z)

Check if the metric satisfies the triangle inequality axiom: d(x,z) ≤ d(x,y) + d(y,z).

Always returns True for DiscreteMetric.

Parameters

x : MetricInput First point y : MetricInput Second point z : MetricInput Third point

Returns

bool True (always satisfied for discrete metric)

Source code in swarmauri_standard/metrics/DiscreteMetric.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def check_triangle_inequality(
    self, x: MetricInput, y: MetricInput, z: MetricInput
) -> bool:
    """
    Check if the metric satisfies the triangle inequality axiom:
    d(x,z) ≤ d(x,y) + d(y,z).

    Always returns True for DiscreteMetric.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point
    z : MetricInput
        Third point

    Returns
    -------
    bool
        True (always satisfied for discrete metric)
    """
    logger.debug(f"Checking triangle inequality axiom for {x}, {y}, and {z}")

    # Calculate the distances
    d_xz = self.distance(x, z)
    d_xy = self.distance(x, y)
    d_yz = self.distance(y, z)

    # Check triangle inequality
    # For discrete metric, this is always satisfied:
    # If x == z, then d_xz = 0, which is ≤ d_xy + d_yz for any values
    # If x != z, then d_xz = 1, and either:
    #   - If x != y or y != z, then d_xy + d_yz ≥ 1
    #   - If x == y and y == z, then x == z (contradiction)
    return d_xz <= d_xy + d_yz

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger