Skip to content

Class swarmauri_standard.metrics.EuclideanMetric.EuclideanMetric

swarmauri_standard.metrics.EuclideanMetric.EuclideanMetric

Bases: MetricBase

Euclidean metric (L2 distance) implementation.

This class implements the standard Euclidean distance metric, which is the straight-line distance between two points in Euclidean space, computed as the square root of the sum of the squared differences between corresponding coordinates.

The Euclidean distance satisfies all metric axioms: - Non-negativity: d(x,y) ≥ 0 - Identity of indiscernibles: d(x,y) = 0 if and only if x = y - Symmetry: d(x,y) = d(y,x) - Triangle inequality: d(x,z) ≤ d(x,y) + d(y,z)

Attributes

type : Literal["EuclideanMetric"] The specific type of metric. resource : str, optional The resource type, defaults to METRIC.

type class-attribute instance-attribute

type = 'EuclideanMetric'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = METRIC.value

version class-attribute instance-attribute

version = '0.1.0'

distance

distance(x, y)

Calculate the Euclidean distance between two points.

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

float The Euclidean distance between x and y

Raises

ValueError If inputs have different dimensions or are incompatible TypeError If input types are not supported

Source code in swarmauri_standard/metrics/EuclideanMetric.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
def distance(self, x: MetricInput, y: MetricInput) -> float:
    """
    Calculate the Euclidean distance between two points.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    float
        The Euclidean distance between x and y

    Raises
    ------
    ValueError
        If inputs have different dimensions or are incompatible
    TypeError
        If input types are not supported
    """
    logger.debug(f"Calculating Euclidean distance between {x} and {y}")

    # Handle different input types
    if isinstance(x, IVector) and isinstance(y, IVector):
        # For vector objects
        if len(x) != len(y):
            raise ValueError(
                f"Vectors must have the same dimension: {len(x)} != {len(y)}"
            )

        # Get numeric values from vectors
        x_values = x.to_numpy()
        y_values = y.to_numpy()

        # Calculate Euclidean distance
        return math.sqrt(
            sum((x_i - y_i) ** 2 for x_i, y_i in zip(x_values, y_values))
        )

    elif (
        isinstance(x, Sequence)
        and isinstance(y, Sequence)
        and not isinstance(x, str)
        and not isinstance(y, str)
    ):
        # For general sequences (lists, tuples, etc.)
        if len(x) != len(y):
            raise ValueError(
                f"Sequences must have the same length: {len(x)} != {len(y)}"
            )

        try:
            return math.sqrt(sum((x_i - y_i) ** 2 for x_i, y_i in zip(x, y)))
        except (TypeError, ValueError) as e:
            logger.error(f"Failed to compute Euclidean distance for sequences: {e}")
            raise ValueError(
                f"Cannot compute Euclidean distance for sequences with non-numeric elements: {e}"
            )

    else:
        logger.error(
            f"Unsupported input types for Euclidean distance: {type(x)} and {type(y)}"
        )
        raise TypeError(
            f"Euclidean distance computation not supported for types {type(x)} and {type(y)}"
        )

distances

distances(x, y)

Calculate Euclidean distances between collections of points.

Parameters

x : Union[MetricInput, MetricInputCollection] First collection of points y : Union[MetricInput, MetricInputCollection] Second collection of points

Returns

Union[List[float], IVector, IMatrix] Matrix or vector of Euclidean distances between points in x and y

Raises

ValueError If inputs are incompatible TypeError If input types are not supported

Source code in swarmauri_standard/metrics/EuclideanMetric.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def distances(
    self,
    x: Union[MetricInput, MetricInputCollection],
    y: Union[MetricInput, MetricInputCollection],
) -> Union[List[float], IVector, IMatrix]:
    """
    Calculate Euclidean distances between collections of points.

    Parameters
    ----------
    x : Union[MetricInput, MetricInputCollection]
        First collection of points
    y : Union[MetricInput, MetricInputCollection]
        Second collection of points

    Returns
    -------
    Union[List[float], IVector, IMatrix]
        Matrix or vector of Euclidean distances between points in x and y

    Raises
    ------
    ValueError
        If inputs are incompatible
    TypeError
        If input types are not supported
    """
    logger.debug("Calculating Euclidean distances between collections")

    # Handle different collection types
    if isinstance(x, IMatrix) and isinstance(y, IMatrix):
        # For matrix objects - compute pairwise distances between rows
        if x.shape[1] != y.shape[1]:
            raise ValueError(
                f"Points must have the same dimension: {x.shape[1]} != {y.shape[1]}"
            )

        # Create distance matrix
        result = [[self.distance(x_row, y_row) for y_row in y] for x_row in x]
        return result

    elif (
        isinstance(x, list)
        and isinstance(y, list)
        and all(isinstance(item, (list, tuple)) for item in x)
        and all(isinstance(item, (list, tuple)) for item in y)
    ):
        # For lists of lists/tuples (representing collections of points)

        # Check if all points have the same dimension
        x_dims = [len(point) for point in x]
        y_dims = [len(point) for point in y]

        if len(set(x_dims + y_dims)) != 1:
            raise ValueError("All points must have the same dimension")

        # Compute pairwise distances
        result = [
            [self.distance(x_point, y_point) for y_point in y] for x_point in x
        ]
        return result

    elif isinstance(x, IVector) and isinstance(y, IVector):
        # Single distance between two vectors
        return [self.distance(x, y)]

    elif isinstance(x, list) and isinstance(y, list):
        # If x and y are simple lists (not lists of lists), treat them as individual points
        if not any(isinstance(item, (list, tuple)) for item in x + y):
            return [self.distance(x, y)]
        else:
            logger.error("Inconsistent collection structure")
            raise ValueError("Inconsistent collection structure")

    else:
        logger.error(f"Unsupported collection types: {type(x)} and {type(y)}")
        raise TypeError(
            f"Euclidean distances computation not supported for types {type(x)} and {type(y)}"
        )

check_non_negativity

check_non_negativity(x, y)

Check if the Euclidean metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

bool True if the axiom is satisfied, which is always the case for Euclidean distance

Source code in swarmauri_standard/metrics/EuclideanMetric.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def check_non_negativity(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the Euclidean metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    bool
        True if the axiom is satisfied, which is always the case for Euclidean distance
    """
    try:
        dist = self.distance(x, y)
        logger.debug(f"Checking non-negativity axiom: distance = {dist}")
        return dist >= 0  # Euclidean distance is always non-negative
    except (TypeError, ValueError) as e:
        logger.error(f"Error checking non-negativity: {e}")
        return False

check_identity_of_indiscernibles

check_identity_of_indiscernibles(x, y)

Check if the Euclidean metric satisfies the identity of indiscernibles axiom: d(x,y) = 0 if and only if x = y.

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

bool True if the axiom is satisfied

Source code in swarmauri_standard/metrics/EuclideanMetric.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def check_identity_of_indiscernibles(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the Euclidean metric satisfies the identity of indiscernibles axiom:
    d(x,y) = 0 if and only if x = y.

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    bool
        True if the axiom is satisfied
    """
    try:
        dist = self.distance(x, y)

        # Check if distance is zero
        is_zero_dist = (
            abs(dist) < 1e-10
        )  # Using small epsilon for floating point comparison

        # Check if points are equal
        if isinstance(x, IVector) and isinstance(y, IVector):
            is_equal = len(x) == len(y) and all(
                abs(x_i - y_i) < 1e-10 for x_i, y_i in zip(x, y)
            )
        elif isinstance(x, Sequence) and isinstance(y, Sequence):
            is_equal = len(x) == len(y) and all(
                abs(x_i - y_i) < 1e-10 for x_i, y_i in zip(x, y)
            )
        else:
            is_equal = x == y

        logger.debug(
            f"Checking identity axiom: distance = {dist}, points equal: {is_equal}"
        )

        # Axiom is satisfied if distance is zero iff points are equal
        return (is_zero_dist and is_equal) or (not is_zero_dist and not is_equal)

    except (TypeError, ValueError) as e:
        logger.error(f"Error checking identity of indiscernibles: {e}")
        return False

check_symmetry

check_symmetry(x, y)

Check if the Euclidean metric satisfies the symmetry axiom: d(x,y) = d(y,x).

Parameters

x : MetricInput First point y : MetricInput Second point

Returns

bool True if the axiom is satisfied

Source code in swarmauri_standard/metrics/EuclideanMetric.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def check_symmetry(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the Euclidean metric satisfies the symmetry axiom: d(x,y) = d(y,x).

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point

    Returns
    -------
    bool
        True if the axiom is satisfied
    """
    try:
        dist_xy = self.distance(x, y)
        dist_yx = self.distance(y, x)

        # Check if the distances are equal (within floating point precision)
        is_symmetric = abs(dist_xy - dist_yx) < 1e-10

        logger.debug(
            f"Checking symmetry axiom: d(x,y) = {dist_xy}, d(y,x) = {dist_yx}, symmetric: {is_symmetric}"
        )
        return is_symmetric

    except (TypeError, ValueError) as e:
        logger.error(f"Error checking symmetry: {e}")
        return False

check_triangle_inequality

check_triangle_inequality(x, y, z)

Check if the Euclidean metric satisfies the triangle inequality axiom: d(x,z) ≤ d(x,y) + d(y,z).

Parameters

x : MetricInput First point y : MetricInput Second point z : MetricInput Third point

Returns

bool True if the axiom is satisfied

Source code in swarmauri_standard/metrics/EuclideanMetric.py
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def check_triangle_inequality(
    self, x: MetricInput, y: MetricInput, z: MetricInput
) -> bool:
    """
    Check if the Euclidean metric satisfies the triangle inequality axiom:
    d(x,z) ≤ d(x,y) + d(y,z).

    Parameters
    ----------
    x : MetricInput
        First point
    y : MetricInput
        Second point
    z : MetricInput
        Third point

    Returns
    -------
    bool
        True if the axiom is satisfied
    """
    try:
        # Calculate the three distances
        dist_xy = self.distance(x, y)
        dist_yz = self.distance(y, z)
        dist_xz = self.distance(x, z)

        # Check triangle inequality
        satisfies_inequality = (
            dist_xz <= dist_xy + dist_yz + 1e-10
        )  # Adding epsilon for floating point precision

        logger.debug(
            f"Checking triangle inequality: d(x,z) = {dist_xz}, d(x,y) + d(y,z) = {dist_xy + dist_yz}, "
            + f"inequality satisfied: {satisfies_inequality}"
        )

        return satisfies_inequality

    except (TypeError, ValueError) as e:
        logger.error(f"Error checking triangle inequality: {e}")
        return False

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger