Skip to content

Class swarmauri_standard.metrics.HammingMetric.HammingMetric

swarmauri_standard.metrics.HammingMetric.HammingMetric

Bases: MetricBase

Hamming distance metric implementation.

Hamming distance counts the number of positions at which two sequences differ. It is primarily used for binary/bitwise data and categorical vectors of equal length.

Attributes

type : Literal["HammingMetric"] The type identifier for this metric

type class-attribute instance-attribute

type = 'HammingMetric'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = METRIC.value

version class-attribute instance-attribute

version = '0.1.0'

distance

distance(x, y)

Calculate the Hamming distance between two sequences.

The Hamming distance is the number of positions at which the corresponding elements of two sequences are different.

Parameters

x : MetricInput First sequence y : MetricInput Second sequence

Returns

float The Hamming distance between x and y

Raises

ValueError If the sequences have different lengths TypeError If input types are not supported

Source code in swarmauri_standard/metrics/HammingMetric.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def distance(self, x: MetricInput, y: MetricInput) -> float:
    """
    Calculate the Hamming distance between two sequences.

    The Hamming distance is the number of positions at which the corresponding
    elements of two sequences are different.

    Parameters
    ----------
    x : MetricInput
        First sequence
    y : MetricInput
        Second sequence

    Returns
    -------
    float
        The Hamming distance between x and y

    Raises
    ------
    ValueError
        If the sequences have different lengths
    TypeError
        If input types are not supported
    """
    logger.debug("Calculating Hamming distance between sequences")

    # Check if inputs are sequences
    if not isinstance(x, Sequence) or not isinstance(y, Sequence):
        raise TypeError("Inputs must be sequences")

    # Check if sequences have the same length
    if len(x) != len(y):
        raise ValueError(f"Sequences must have equal length: {len(x)} != {len(y)}")

    # Count positions where elements differ
    distance = sum(xi != yi for xi, yi in zip(x, y))

    logger.debug(f"Hamming distance: {distance}")
    return float(distance)

distances

distances(x, y)

Calculate Hamming distances between collections of sequences.

Parameters

x : Union[MetricInput, MetricInputCollection] First collection of sequences y : Union[MetricInput, MetricInputCollection] Second collection of sequences

Returns

Union[List[float], IVector, IMatrix] Matrix or vector of Hamming distances between sequences in x and y

Raises

ValueError If any pair of sequences have different lengths TypeError If input types are not supported

Source code in swarmauri_standard/metrics/HammingMetric.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def distances(
    self,
    x: Union[MetricInput, MetricInputCollection],
    y: Union[MetricInput, MetricInputCollection],
) -> Union[List[float], IVector, IMatrix]:
    """
    Calculate Hamming distances between collections of sequences.

    Parameters
    ----------
    x : Union[MetricInput, MetricInputCollection]
        First collection of sequences
    y : Union[MetricInput, MetricInputCollection]
        Second collection of sequences

    Returns
    -------
    Union[List[float], IVector, IMatrix]
        Matrix or vector of Hamming distances between sequences in x and y

    Raises
    ------
    ValueError
        If any pair of sequences have different lengths
    TypeError
        If input types are not supported
    """
    logger.debug("Calculating Hamming distances between collections")

    # Handle numpy arrays
    if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
        # For 1D arrays (single sequences)
        if x.ndim == 1 and y.ndim == 1:
            if x.shape[0] != y.shape[0]:
                raise ValueError(
                    f"Sequences must have equal length: {x.shape[0]} != {y.shape[0]}"
                )
            return float(np.sum(x != y))

        # For 2D arrays (multiple sequences)
        elif x.ndim == 2 and y.ndim == 2:
            if x.shape[1] != y.shape[1]:
                raise ValueError(
                    f"Sequences must have equal length: {x.shape[1]} != {y.shape[1]}"
                )

            # Calculate distances between all pairs
            result = np.zeros((x.shape[0], y.shape[0]))
            for i in range(x.shape[0]):
                for j in range(y.shape[0]):
                    result[i, j] = np.sum(x[i] != y[j])
            return result.tolist()

    # Handle lists and other sequence types
    try:
        # Check if x and y are collections of sequences
        if isinstance(x, Sequence) and isinstance(y, Sequence):
            # If both are single sequences
            if not isinstance(x[0], Sequence) and not isinstance(y[0], Sequence):
                return [self.distance(x, y)]

            # If x is a collection and y is a single sequence
            elif isinstance(x[0], Sequence) and not isinstance(y[0], Sequence):
                return [self.distance(xi, y) for xi in x]

            # If x is a single sequence and y is a collection
            elif not isinstance(x[0], Sequence) and isinstance(y[0], Sequence):
                return [self.distance(x, yi) for yi in y]

            # If both are collections
            else:
                return [[self.distance(xi, yi) for yi in y] for xi in x]
    except (TypeError, IndexError):
        raise TypeError("Inputs must be collections of sequences or sequences")

    raise TypeError("Unsupported input types")

check_non_negativity

check_non_negativity(x, y)

Check if the Hamming metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

Hamming distance always satisfies this axiom as it counts differences, which cannot be negative.

Parameters

x : MetricInput First sequence y : MetricInput Second sequence

Returns

bool True, as Hamming distance is always non-negative

Source code in swarmauri_standard/metrics/HammingMetric.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def check_non_negativity(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the Hamming metric satisfies the non-negativity axiom: d(x,y) ≥ 0.

    Hamming distance always satisfies this axiom as it counts differences,
    which cannot be negative.

    Parameters
    ----------
    x : MetricInput
        First sequence
    y : MetricInput
        Second sequence

    Returns
    -------
    bool
        True, as Hamming distance is always non-negative
    """
    logger.debug("Checking non-negativity axiom for Hamming distance")
    # Hamming distance is always non-negative as it counts differences
    return True

check_identity_of_indiscernibles

check_identity_of_indiscernibles(x, y)

Check if the Hamming metric satisfies the identity of indiscernibles axiom: d(x,y) = 0 if and only if x = y.

Parameters

x : MetricInput First sequence y : MetricInput Second sequence

Returns

bool True if the axiom is satisfied, False otherwise

Source code in swarmauri_standard/metrics/HammingMetric.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def check_identity_of_indiscernibles(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the Hamming metric satisfies the identity of indiscernibles axiom:
    d(x,y) = 0 if and only if x = y.

    Parameters
    ----------
    x : MetricInput
        First sequence
    y : MetricInput
        Second sequence

    Returns
    -------
    bool
        True if the axiom is satisfied, False otherwise
    """
    logger.debug("Checking identity of indiscernibles axiom for Hamming distance")

    # Calculate distance
    dist = self.distance(x, y)

    # Check if distance is 0 iff x equals y
    sequences_equal = x == y
    distance_zero = dist == 0

    return sequences_equal == distance_zero

check_symmetry

check_symmetry(x, y)

Check if the Hamming metric satisfies the symmetry axiom: d(x,y) = d(y,x).

Parameters

x : MetricInput First sequence y : MetricInput Second sequence

Returns

bool True, as Hamming distance is always symmetric

Source code in swarmauri_standard/metrics/HammingMetric.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def check_symmetry(self, x: MetricInput, y: MetricInput) -> bool:
    """
    Check if the Hamming metric satisfies the symmetry axiom: d(x,y) = d(y,x).

    Parameters
    ----------
    x : MetricInput
        First sequence
    y : MetricInput
        Second sequence

    Returns
    -------
    bool
        True, as Hamming distance is always symmetric
    """
    logger.debug("Checking symmetry axiom for Hamming distance")

    # Calculate distances both ways
    dist_xy = self.distance(x, y)
    dist_yx = self.distance(y, x)

    # Check if they're equal
    return (
        abs(dist_xy - dist_yx) < 1e-10
    )  # Using small epsilon for float comparison

check_triangle_inequality

check_triangle_inequality(x, y, z)

Check if the Hamming metric satisfies the triangle inequality axiom: d(x,z) ≤ d(x,y) + d(y,z).

Parameters

x : MetricInput First sequence y : MetricInput Second sequence z : MetricInput Third sequence

Returns

bool True if the axiom is satisfied, False otherwise

Source code in swarmauri_standard/metrics/HammingMetric.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def check_triangle_inequality(
    self, x: MetricInput, y: MetricInput, z: MetricInput
) -> bool:
    """
    Check if the Hamming metric satisfies the triangle inequality axiom:
    d(x,z) ≤ d(x,y) + d(y,z).

    Parameters
    ----------
    x : MetricInput
        First sequence
    y : MetricInput
        Second sequence
    z : MetricInput
        Third sequence

    Returns
    -------
    bool
        True if the axiom is satisfied, False otherwise
    """
    logger.debug("Checking triangle inequality axiom for Hamming distance")

    # Calculate the three distances
    dist_xz = self.distance(x, z)
    dist_xy = self.distance(x, y)
    dist_yz = self.distance(y, z)

    # Check if triangle inequality holds
    return (
        dist_xz <= dist_xy + dist_yz + 1e-10
    )  # Small epsilon for float comparison

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger