Class swarmauri_standard.metrics.SobolevMetric.SobolevMetric
swarmauri_standard.metrics.SobolevMetric.SobolevMetric
SobolevMetric(**kwargs)
Bases: MetricBase
A metric derived from the Sobolev norm.
This metric accounts for both the differences in function values and their derivatives, making it suitable for measuring distance between functions where smoothness is important.
Attributes
type : Literal["SobolevMetric"] The type identifier for this metric. order : int The highest derivative order to consider in the metric computation. weights : Dict[int, float] Weights for each derivative order in the metric computation.
Initialize the Sobolev metric with specified parameters.
Parameters
**kwargs Keyword arguments to pass to the parent class constructor. May include 'order' and 'weights' to customize the metric.
Source code in swarmauri_standard/metrics/SobolevMetric.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
type
class-attribute
instance-attribute
type = 'SobolevMetric'
order
class-attribute
instance-attribute
order = Field(
default=1,
description="Highest derivative order to consider",
)
weights
class-attribute
instance-attribute
weights = Field(
default_factory=lambda: {0: 1.0, 1: 1.0},
description="Weights for each derivative order",
)
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
distance
distance(x, y)
Calculate the Sobolev distance between two functions or vectors.
The Sobolev distance is defined as the Sobolev norm of the difference between the two inputs, taking into account both values and derivatives.
Parameters
x : MetricInput First input (function or vector) y : MetricInput Second input (function or vector)
Returns
float The Sobolev distance between x and y
Raises
ValueError If inputs are incompatible or the distance cannot be computed TypeError If input types are not supported
Source code in swarmauri_standard/metrics/SobolevMetric.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
distances
distances(x, y)
Calculate Sobolev distances between collections of functions or vectors.
Parameters
x : Union[MetricInput, MetricInputCollection] First collection of inputs y : Union[MetricInput, MetricInputCollection] Second collection of inputs
Returns
Union[List[float], IVector, IMatrix] Matrix or vector of Sobolev distances between inputs in x and y
Raises
ValueError If inputs are incompatible or distances cannot be computed TypeError If input types are not supported
Source code in swarmauri_standard/metrics/SobolevMetric.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
check_non_negativity
check_non_negativity(x, y)
Check if the Sobolev metric satisfies the non-negativity axiom: d(x,y) ≥ 0.
Parameters
x : MetricInput First input y : MetricInput Second input
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SobolevMetric.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
check_identity_of_indiscernibles
check_identity_of_indiscernibles(x, y)
Check if the Sobolev metric satisfies the identity of indiscernibles axiom: d(x,y) = 0 if and only if x = y.
Parameters
x : MetricInput First input y : MetricInput Second input
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SobolevMetric.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
check_symmetry
check_symmetry(x, y)
Check if the Sobolev metric satisfies the symmetry axiom: d(x,y) = d(y,x).
Parameters
x : MetricInput First input y : MetricInput Second input
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SobolevMetric.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
check_triangle_inequality
check_triangle_inequality(x, y, z)
Check if the Sobolev metric satisfies the triangle inequality axiom: d(x,z) ≤ d(x,y) + d(y,z).
Parameters
x : MetricInput First input y : MetricInput Second input z : MetricInput Third input
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SobolevMetric.py
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|