Class swarmauri_standard.metrics.SupremumMetric.SupremumMetric
swarmauri_standard.metrics.SupremumMetric.SupremumMetric
Bases: MetricBase
L∞-based metric measuring largest component difference.
This metric computes the distance between two points as the maximum absolute difference between their corresponding components. It is also known as the Chebyshev distance or the L∞ metric.
The metric is particularly useful in bounded vector spaces where the maximum deviation between components is more important than the overall sum of differences.
Attributes
type : Literal["SupremumMetric"] The type identifier for this metric implementation. resource : str, optional The resource type, defaults to METRIC.
type
class-attribute
instance-attribute
type = 'SupremumMetric'
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
distance
distance(x, y)
Calculate the supremum (maximum) distance between two points.
Parameters
x : MetricInput First point y : MetricInput Second point
Returns
float The maximum absolute difference between corresponding components
Raises
ValueError If inputs have different dimensions or are incompatible TypeError If input types are not supported
Source code in swarmauri_standard/metrics/SupremumMetric.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
|
distances
distances(x, y)
Calculate distances between collections of points.
Parameters
x : Union[MetricInput, MetricInputCollection] First collection of points y : Union[MetricInput, MetricInputCollection] Second collection of points
Returns
Union[List[float], IVector, IMatrix] Matrix or vector of distances between points in x and y
Raises
ValueError If inputs are incompatible with the metric TypeError If input types are not supported
Source code in swarmauri_standard/metrics/SupremumMetric.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
check_non_negativity
check_non_negativity(x, y)
Check if the metric satisfies the non-negativity axiom: d(x,y) ≥ 0.
The supremum metric always satisfies this axiom as it's based on absolute differences.
Parameters
x : MetricInput First point y : MetricInput Second point
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SupremumMetric.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
check_identity_of_indiscernibles
check_identity_of_indiscernibles(x, y)
Check if the metric satisfies the identity of indiscernibles axiom: d(x,y) = 0 if and only if x = y.
Parameters
x : MetricInput First point y : MetricInput Second point
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SupremumMetric.py
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
check_symmetry
check_symmetry(x, y)
Check if the metric satisfies the symmetry axiom: d(x,y) = d(y,x).
The supremum metric always satisfies this axiom as absolute differences are symmetric.
Parameters
x : MetricInput First point y : MetricInput Second point
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SupremumMetric.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
check_triangle_inequality
check_triangle_inequality(x, y, z)
Check if the metric satisfies the triangle inequality axiom: d(x,z) ≤ d(x,y) + d(y,z).
Parameters
x : MetricInput First point y : MetricInput Second point z : MetricInput Third point
Returns
bool True if the axiom is satisfied, False otherwise
Source code in swarmauri_standard/metrics/SupremumMetric.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|