Skip to content

Class swarmauri_standard.norms.GeneralLpNorm.GeneralLpNorm

swarmauri_standard.norms.GeneralLpNorm.GeneralLpNorm

Bases: NormBase

General Lp norm implementation with parameter p in (1, ∞).

This class implements the Lp norm for various magnitudes of p on real-valued functions. The Lp norm of a vector x is defined as (sum(|x_i|^p))^(1/p) for finite p > 1.

Attributes

type : Literal["GeneralLpNorm"] The type identifier for this norm. p : float The parameter p for the Lp norm. Must be finite and greater than 1. resource : str, optional The resource type, defaults to NORM.

type class-attribute instance-attribute

type = 'GeneralLpNorm'

p class-attribute instance-attribute

p = Field(
    ...,
    description="Parameter p for the Lp norm (must be > 1)",
)

resource class-attribute instance-attribute

resource = Field(default=NORM.value)

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

version class-attribute instance-attribute

version = '0.1.0'

validate_p

validate_p(v)

Validate that p is greater than 1 and finite.

Parameters

v : float The value to validate.

Returns

float The validated value.

Raises

ValueError If p is not greater than 1 or is not finite.

Source code in swarmauri_standard/norms/GeneralLpNorm.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
@validator("p")
def validate_p(cls, v):
    """
    Validate that p is greater than 1 and finite.

    Parameters
    ----------
    v : float
        The value to validate.

    Returns
    -------
    float
        The validated value.

    Raises
    ------
    ValueError
        If p is not greater than 1 or is not finite.
    """
    if v <= 1:
        raise ValueError(f"Parameter p must be greater than 1, got {v}")
    if not np.isfinite(v):
        raise ValueError(f"Parameter p must be finite, got {v}")
    return v

compute

compute(x)

Compute the Lp norm of the input.

Parameters

x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType] The input for which to compute the norm.

Returns

float The computed Lp norm value.

Raises

TypeError If the input type is not supported. ValueError If the norm cannot be computed for the given input.

Source code in swarmauri_standard/norms/GeneralLpNorm.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def compute(
    self, x: Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
) -> float:
    """
    Compute the Lp norm of the input.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
        The input for which to compute the norm.

    Returns
    -------
    float
        The computed Lp norm value.

    Raises
    ------
    TypeError
        If the input type is not supported.
    ValueError
        If the norm cannot be computed for the given input.
    """
    try:
        # Convert input to numpy array
        x_array = self._convert_to_array(x)

        # Compute Lp norm: (sum(|x_i|^p))^(1/p)
        norm_value = np.sum(np.abs(x_array) ** self.p) ** (1 / self.p)

        logger.debug(f"Computed Lp norm with p={self.p}: {norm_value}")
        return float(norm_value)
    except Exception as e:
        logger.error(f"Error computing Lp norm: {str(e)}")
        raise

check_non_negativity

check_non_negativity(x)

Check if the Lp norm satisfies the non-negativity property.

The Lp norm is always non-negative by definition.

Parameters

x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType] The input to check.

Returns

bool True if the norm is non-negative, False otherwise.

Source code in swarmauri_standard/norms/GeneralLpNorm.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def check_non_negativity(
    self, x: Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
) -> bool:
    """
    Check if the Lp norm satisfies the non-negativity property.

    The Lp norm is always non-negative by definition.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
        The input to check.

    Returns
    -------
    bool
        True if the norm is non-negative, False otherwise.
    """
    try:
        norm_value = self.compute(x)
        result = norm_value >= 0
        logger.debug(f"Non-negativity check result: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in non-negativity check: {str(e)}")
        return False

check_definiteness

check_definiteness(x)

Check if the Lp norm satisfies the definiteness property.

The definiteness property states that the norm of x is 0 if and only if x is 0.

Parameters

x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType] The input to check.

Returns

bool True if the norm satisfies the definiteness property, False otherwise.

Source code in swarmauri_standard/norms/GeneralLpNorm.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def check_definiteness(
    self, x: Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
) -> bool:
    """
    Check if the Lp norm satisfies the definiteness property.

    The definiteness property states that the norm of x is 0 if and only if x is 0.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
        The input to check.

    Returns
    -------
    bool
        True if the norm satisfies the definiteness property, False otherwise.
    """
    try:
        x_array = self._convert_to_array(x)
        norm_value = self.compute(x)

        # Check if norm is 0 iff x is 0 (all elements are 0)
        is_zero = np.allclose(x_array, 0)
        norm_is_zero = np.isclose(norm_value, 0)

        result = (is_zero and norm_is_zero) or (not is_zero and not norm_is_zero)
        logger.debug(f"Definiteness check result: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in definiteness check: {str(e)}")
        return False

check_triangle_inequality

check_triangle_inequality(x, y)

Check if the Lp norm satisfies the triangle inequality.

The triangle inequality states that norm(x + y) <= norm(x) + norm(y).

Parameters

x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType] The first input. y : Union[VectorType, MatrixType, SequenceType, StringType, CallableType] The second input.

Returns

bool True if the norm satisfies the triangle inequality, False otherwise.

Raises

TypeError If the inputs are not of the same type or cannot be added.

Source code in swarmauri_standard/norms/GeneralLpNorm.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def check_triangle_inequality(
    self,
    x: Union[VectorType, MatrixType, SequenceType, StringType, CallableType],
    y: Union[VectorType, MatrixType, SequenceType, StringType, CallableType],
) -> bool:
    """
    Check if the Lp norm satisfies the triangle inequality.

    The triangle inequality states that norm(x + y) <= norm(x) + norm(y).

    Parameters
    ----------
    x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
        The first input.
    y : Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
        The second input.

    Returns
    -------
    bool
        True if the norm satisfies the triangle inequality, False otherwise.

    Raises
    ------
    TypeError
        If the inputs are not of the same type or cannot be added.
    """
    try:
        x_array = self._convert_to_array(x)
        y_array = self._convert_to_array(y)

        # Ensure arrays have the same shape
        if x_array.shape != y_array.shape:
            raise TypeError(
                "Inputs must have the same shape for triangle inequality check"
            )

        # Compute norms
        norm_x = self.compute(x)
        norm_y = self.compute(y)

        # Compute norm of sum
        sum_array = x_array + y_array
        norm_sum = np.sum(np.abs(sum_array) ** self.p) ** (1 / self.p)

        # Check triangle inequality
        result = (
            norm_sum <= norm_x + norm_y + 1e-10
        )  # Small epsilon for numerical stability
        logger.debug(f"Triangle inequality check result: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in triangle inequality check: {str(e)}")
        return False

check_absolute_homogeneity

check_absolute_homogeneity(x, scalar)

Check if the Lp norm satisfies the absolute homogeneity property.

The absolute homogeneity property states that norm(ax) = |a|norm(x) for scalar a.

Parameters

x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType] The input. scalar : float The scalar value.

Returns

bool True if the norm satisfies the absolute homogeneity property, False otherwise.

Raises

TypeError If the input cannot be scaled by the scalar.

Source code in swarmauri_standard/norms/GeneralLpNorm.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def check_absolute_homogeneity(
    self,
    x: Union[VectorType, MatrixType, SequenceType, StringType, CallableType],
    scalar: float,
) -> bool:
    """
    Check if the Lp norm satisfies the absolute homogeneity property.

    The absolute homogeneity property states that norm(a*x) = |a|*norm(x) for scalar a.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, SequenceType, StringType, CallableType]
        The input.
    scalar : float
        The scalar value.

    Returns
    -------
    bool
        True if the norm satisfies the absolute homogeneity property, False otherwise.

    Raises
    ------
    TypeError
        If the input cannot be scaled by the scalar.
    """
    try:
        x_array = self._convert_to_array(x)

        # Compute norm of x
        norm_x = self.compute(x)

        # Compute norm of scaled x
        scaled_array = scalar * x_array
        norm_scaled = np.sum(np.abs(scaled_array) ** self.p) ** (1 / self.p)

        # Check absolute homogeneity
        expected = abs(scalar) * norm_x
        result = np.isclose(norm_scaled, expected, rtol=1e-10, atol=1e-10)
        logger.debug(f"Absolute homogeneity check result: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in absolute homogeneity check: {str(e)}")
        return False

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger