Class swarmauri_standard.norms.L1ManhattanNorm.L1ManhattanNorm
swarmauri_standard.norms.L1ManhattanNorm.L1ManhattanNorm
Bases: NormBase
Implementation of the L1 (Manhattan) norm.
The L1 norm calculates the sum of the absolute values of vector components. Also known as the Manhattan or Taxicab norm, it represents the distance traveled along grid lines in a city block layout.
Attributes
type : Literal["L1ManhattanNorm"] The type identifier for this norm implementation. resource : str, optional The resource type, defaults to NORM.
type
class-attribute
instance-attribute
type = 'L1ManhattanNorm'
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
compute
compute(x)
Compute the L1 (Manhattan) norm of the input.
Parameters
x : Union[IVector, IMatrix, Sequence, str, float] The input for which to compute the norm.
Returns
float The computed L1 norm value.
Raises
TypeError If the input type is not supported. ValueError If the norm cannot be computed for the given input.
Source code in swarmauri_standard/norms/L1ManhattanNorm.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
check_non_negativity
check_non_negativity(x)
Check if the L1 norm satisfies the non-negativity property.
The L1 norm is always non-negative by definition (sum of absolute values).
Parameters
x : Union[IVector, IMatrix, Sequence, str, float] The input to check.
Returns
bool True if the norm is non-negative, always True for L1 norm.
Source code in swarmauri_standard/norms/L1ManhattanNorm.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
check_definiteness
check_definiteness(x)
Check if the L1 norm satisfies the definiteness property.
The definiteness property states that the norm of x is 0 if and only if x is 0.
Parameters
x : Union[IVector, IMatrix, Sequence, str, float] The input to check.
Returns
bool True if the norm satisfies the definiteness property.
Source code in swarmauri_standard/norms/L1ManhattanNorm.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
check_triangle_inequality
check_triangle_inequality(x, y)
Check if the L1 norm satisfies the triangle inequality.
The triangle inequality states that norm(x + y) <= norm(x) + norm(y).
Parameters
x : Union[IVector, IMatrix, Sequence, str, float] The first input. y : Union[IVector, IMatrix, Sequence, str, float] The second input.
Returns
bool True if the norm satisfies the triangle inequality.
Raises
TypeError If the inputs are not of the same type or cannot be added.
Source code in swarmauri_standard/norms/L1ManhattanNorm.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
check_absolute_homogeneity
check_absolute_homogeneity(x, scalar)
Check if the L1 norm satisfies the absolute homogeneity property.
The absolute homogeneity property states that norm(ax) = |a|norm(x) for scalar a.
Parameters
x : Union[IVector, IMatrix, Sequence, str, float] The input. scalar : float The scalar value.
Returns
bool True if the norm satisfies the absolute homogeneity property.
Raises
TypeError If the input cannot be scaled by the scalar.
Source code in swarmauri_standard/norms/L1ManhattanNorm.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|