Class swarmauri_standard.pseudometrics.FunctionDifferencePseudometric.FunctionDifferencePseudometric
swarmauri_standard.pseudometrics.FunctionDifferencePseudometric.FunctionDifferencePseudometric
FunctionDifferencePseudometric(
evaluation_points=None,
num_samples=10,
sampling_strategy="fixed",
domain_bounds=None,
norm_type="l2",
)
Bases: PseudometricBase
Measures the distance between two functions based on their output differences.
This pseudometric calculates the distance between functions by evaluating them at specific points and measuring the differences in their outputs. Functions are considered close if they produce similar outputs at the evaluation points, even if they differ elsewhere.
Attributes
type : Literal["FunctionDifferencePseudometric"] The type identifier for this pseudometric. evaluation_points : Optional[List[Any]] The specific points at which to evaluate the functions. num_samples : int Number of points to sample if using random sampling. sampling_strategy : str Strategy for sampling points ('fixed', 'random', 'grid'). domain_bounds : Optional[Dict[str, Tuple[float, float]]] Bounds for the domain when using random or grid sampling. norm_type : str The type of norm to use for calculating differences ('l1', 'l2', 'max').
Initialize the FunctionDifferencePseudometric.
Parameters
evaluation_points : Optional[List[Any]], optional The specific points at which to evaluate the functions. Required if sampling_strategy is 'fixed'. num_samples : int, optional Number of points to sample if using random sampling, by default 10. sampling_strategy : str, optional Strategy for sampling points ('fixed', 'random', 'grid'), by default "fixed". domain_bounds : Optional[Dict[str, tuple]], optional Bounds for the domain when using random or grid sampling, by default None. Example: {'x': (-1, 1), 'y': (0, 2)} for a 2D domain. norm_type : str, optional The type of norm to use for calculating differences ('l1', 'l2', 'max'), by default "l2".
Raises
ValueError If evaluation_points is None and sampling_strategy is 'fixed', or if domain_bounds is None and sampling_strategy is 'random' or 'grid'.
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
type
class-attribute
instance-attribute
type = 'FunctionDifferencePseudometric'
evaluation_points
instance-attribute
evaluation_points = evaluation_points
num_samples
instance-attribute
num_samples = num_samples
sampling_strategy
instance-attribute
sampling_strategy = sampling_strategy
domain_bounds
instance-attribute
domain_bounds = domain_bounds
norm_type
instance-attribute
norm_type = norm_type
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
distance
distance(x, y)
Calculate the pseudometric distance between two functions.
Parameters
x : Callable The first function y : Callable The second function
Returns
float The distance between the functions based on their output differences
Raises
TypeError If inputs are not callable ValueError If functions cannot be evaluated at the sample points
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
distances
distances(xs, ys)
Calculate the pairwise distances between two collections of functions.
Parameters
xs : Sequence[Callable] The first collection of functions ys : Sequence[Callable] The second collection of functions
Returns
List[List[float]] A matrix of distances where distances[i][j] is the distance between xs[i] and ys[j]
Raises
TypeError If any input is not callable ValueError If functions cannot be evaluated at the sample points
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
check_non_negativity
check_non_negativity(x, y)
Check if the distance function satisfies the non-negativity property.
For a pseudometric, d(x,y) ≥ 0 must always hold.
Parameters
x : Callable The first function y : Callable The second function
Returns
bool True if d(x,y) ≥ 0, False otherwise
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
check_symmetry
check_symmetry(x, y, tolerance=1e-10)
Check if the distance function satisfies the symmetry property.
For a pseudometric, d(x,y) = d(y,x) must hold.
Parameters
x : Callable The first function y : Callable The second function tolerance : float, optional The tolerance for floating-point comparisons, by default 1e-10
Returns
bool True if d(x,y) = d(y,x) within tolerance, False otherwise
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
|
check_triangle_inequality
check_triangle_inequality(x, y, z, tolerance=1e-10)
Check if the distance function satisfies the triangle inequality.
For a pseudometric, d(x,z) ≤ d(x,y) + d(y,z) must hold.
Parameters
x : Callable The first function y : Callable The second function z : Callable The third function tolerance : float, optional The tolerance for floating-point comparisons, by default 1e-10
Returns
bool True if d(x,z) ≤ d(x,y) + d(y,z) within tolerance, False otherwise
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
|
check_weak_identity
check_weak_identity(x, y)
Check if the distance function satisfies the weak identity property.
For a pseudometric, d(x,y) = 0 is allowed even when x ≠y, which happens when the functions produce identical outputs at all evaluation points.
Parameters
x : Callable The first function y : Callable The second function
Returns
bool True if the pseudometric properly handles the weak identity property
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
to_dict
to_dict()
Convert the pseudometric to a dictionary representation.
Returns
Dict[str, Any] Dictionary representation of the pseudometric
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
|
from_dict
classmethod
from_dict(data)
Create a FunctionDifferencePseudometric from a dictionary representation.
Parameters
data : Dict[str, Any] Dictionary representation of the pseudometric
Returns
FunctionDifferencePseudometric The reconstructed pseudometric
Source code in swarmauri_standard/pseudometrics/FunctionDifferencePseudometric.py
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|