Skip to content

Class swarmauri_standard.pseudometrics.ProjectionPseudometricR2.ProjectionPseudometricR2

swarmauri_standard.pseudometrics.ProjectionPseudometricR2.ProjectionPseudometricR2

ProjectionPseudometricR2(projection_axis=0, **kwargs)

Bases: PseudometricBase

A pseudometric that measures distance via projection in ℝ².

This pseudometric projects points onto a specified coordinate axis (x or y) and calculates the distance between their projections. Since points with different coordinates can have the same projection, this satisfies the pseudometric properties (allowing d(x,y)=0 for x≠y).

Attributes

type : Literal["ProjectionPseudometricR2"] The type identifier for this pseudometric projection_axis : int The axis to project onto (0 for x-axis, 1 for y-axis)

Initialize the ProjectionPseudometricR2.

Parameters

projection_axis : int, optional The axis to project onto (0 for x-axis, 1 for y-axis), by default 0

Raises

ValueError If projection_axis is not 0 or 1

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def __init__(self, projection_axis: int = 0, **kwargs):
    """
    Initialize the ProjectionPseudometricR2.

    Parameters
    ----------
    projection_axis : int, optional
        The axis to project onto (0 for x-axis, 1 for y-axis), by default 0

    Raises
    ------
    ValueError
        If projection_axis is not 0 or 1
    """
    if projection_axis not in [0, 1]:
        logger.error(
            f"Invalid projection axis: {projection_axis}. Must be 0 (x-axis) or 1 (y-axis)."
        )
        raise ValueError("Projection axis must be 0 (x-axis) or 1 (y-axis)")

    super().__init__(**kwargs, projection_axis=projection_axis)
    logger.debug(
        f"Initialized ProjectionPseudometricR2 with projection_axis={projection_axis}"
    )

type class-attribute instance-attribute

type = 'ProjectionPseudometricR2'

projection_axis class-attribute instance-attribute

projection_axis = Field(default=0, ge=0, le=1)

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=PSEUDOMETRIC.value)

version class-attribute instance-attribute

version = '0.1.0'

distance

distance(x, y)

Calculate the projection pseudometric distance between two 2D points.

The distance is calculated as the absolute difference between the projected coordinates on the specified axis.

Parameters

x : Union[VectorType, MatrixType, Sequence[T], str, Callable] The first 2D point y : Union[VectorType, MatrixType, Sequence[T], str, Callable] The second 2D point

Returns

float The projection pseudometric distance between x and y

Raises

TypeError If inputs are not valid 2D point representations ValueError If inputs cannot be interpreted as 2D points

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def distance(
    self,
    x: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    y: Union[VectorType, MatrixType, Sequence[T], str, Callable],
) -> float:
    """
    Calculate the projection pseudometric distance between two 2D points.

    The distance is calculated as the absolute difference between the projected
    coordinates on the specified axis.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The first 2D point
    y : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The second 2D point

    Returns
    -------
    float
        The projection pseudometric distance between x and y

    Raises
    ------
    TypeError
        If inputs are not valid 2D point representations
    ValueError
        If inputs cannot be interpreted as 2D points
    """
    logger.debug(f"Calculating projection distance between {x} and {y}")

    try:
        # Extract coordinates from both points
        x_coords = self._validate_and_extract_coordinates(x)
        y_coords = self._validate_and_extract_coordinates(y)

        # Calculate distance along the projection axis
        return abs(x_coords[self.projection_axis] - y_coords[self.projection_axis])

    except Exception as e:
        logger.error(f"Error calculating projection distance: {str(e)}")
        raise

distances

distances(xs, ys)

Calculate the pairwise projection distances between two collections of 2D points.

Parameters

xs : Sequence[Union[VectorType, MatrixType, Sequence[T], str, Callable]] The first collection of 2D points ys : Sequence[Union[VectorType, MatrixType, Sequence[T], str, Callable]] The second collection of 2D points

Returns

List[List[float]] A matrix of distances where distances[i][j] is the projection distance between xs[i] and ys[j]

Raises

TypeError If inputs contain invalid 2D point representations ValueError If inputs cannot be interpreted as 2D points

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def distances(
    self,
    xs: Sequence[Union[VectorType, MatrixType, Sequence[T], str, Callable]],
    ys: Sequence[Union[VectorType, MatrixType, Sequence[T], str, Callable]],
) -> List[List[float]]:
    """
    Calculate the pairwise projection distances between two collections of 2D points.

    Parameters
    ----------
    xs : Sequence[Union[VectorType, MatrixType, Sequence[T], str, Callable]]
        The first collection of 2D points
    ys : Sequence[Union[VectorType, MatrixType, Sequence[T], str, Callable]]
        The second collection of 2D points

    Returns
    -------
    List[List[float]]
        A matrix of distances where distances[i][j] is the projection distance between xs[i] and ys[j]

    Raises
    ------
    TypeError
        If inputs contain invalid 2D point representations
    ValueError
        If inputs cannot be interpreted as 2D points
    """
    logger.debug(
        f"Calculating pairwise projection distances between {len(xs)} and {len(ys)} points"
    )

    try:
        # Pre-extract all coordinates for efficiency
        x_points = [self._validate_and_extract_coordinates(x) for x in xs]
        y_points = [self._validate_and_extract_coordinates(y) for y in ys]

        # Calculate the distance matrix
        result = []
        for x_point in x_points:
            row = []
            for y_point in y_points:
                # Calculate distance along the projection axis
                dist = abs(
                    x_point[self.projection_axis] - y_point[self.projection_axis]
                )
                row.append(dist)
            result.append(row)

        return result

    except Exception as e:
        logger.error(f"Error calculating pairwise projection distances: {str(e)}")
        raise

check_non_negativity

check_non_negativity(x, y)

Check if the projection pseudometric satisfies the non-negativity property.

Parameters

x : Union[VectorType, MatrixType, Sequence[T], str, Callable] The first 2D point y : Union[VectorType, MatrixType, Sequence[T], str, Callable] The second 2D point

Returns

bool True if d(x,y) ≥ 0, which is always the case for this pseudometric

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def check_non_negativity(
    self,
    x: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    y: Union[VectorType, MatrixType, Sequence[T], str, Callable],
) -> bool:
    """
    Check if the projection pseudometric satisfies the non-negativity property.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The first 2D point
    y : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The second 2D point

    Returns
    -------
    bool
        True if d(x,y) ≥ 0, which is always the case for this pseudometric
    """
    try:
        # Calculate the distance
        dist = self.distance(x, y)

        # Check if it's non-negative
        return dist >= 0

    except Exception as e:
        logger.error(f"Error checking non-negativity: {str(e)}")
        raise

check_symmetry

check_symmetry(x, y, tolerance=1e-10)

Check if the projection pseudometric satisfies the symmetry property.

Parameters

x : Union[VectorType, MatrixType, Sequence[T], str, Callable] The first 2D point y : Union[VectorType, MatrixType, Sequence[T], str, Callable] The second 2D point tolerance : float, optional The tolerance for floating-point comparisons, by default 1e-10

Returns

bool True if d(x,y) = d(y,x) within tolerance, which is always the case for this pseudometric

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
def check_symmetry(
    self,
    x: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    y: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    tolerance: float = 1e-10,
) -> bool:
    """
    Check if the projection pseudometric satisfies the symmetry property.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The first 2D point
    y : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The second 2D point
    tolerance : float, optional
        The tolerance for floating-point comparisons, by default 1e-10

    Returns
    -------
    bool
        True if d(x,y) = d(y,x) within tolerance, which is always the case for this pseudometric
    """
    try:
        # Calculate distances in both directions
        dist_xy = self.distance(x, y)
        dist_yx = self.distance(y, x)

        # Check if they're equal within tolerance
        return abs(dist_xy - dist_yx) < tolerance

    except Exception as e:
        logger.error(f"Error checking symmetry: {str(e)}")
        raise

check_triangle_inequality

check_triangle_inequality(x, y, z, tolerance=1e-10)

Check if the projection pseudometric satisfies the triangle inequality.

Parameters

x : Union[VectorType, MatrixType, Sequence[T], str, Callable] The first 2D point y : Union[VectorType, MatrixType, Sequence[T], str, Callable] The second 2D point z : Union[VectorType, MatrixType, Sequence[T], str, Callable] The third 2D point tolerance : float, optional The tolerance for floating-point comparisons, by default 1e-10

Returns

bool True if d(x,z) ≤ d(x,y) + d(y,z) within tolerance, which is always the case for this pseudometric

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def check_triangle_inequality(
    self,
    x: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    y: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    z: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    tolerance: float = 1e-10,
) -> bool:
    """
    Check if the projection pseudometric satisfies the triangle inequality.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The first 2D point
    y : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The second 2D point
    z : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The third 2D point
    tolerance : float, optional
        The tolerance for floating-point comparisons, by default 1e-10

    Returns
    -------
    bool
        True if d(x,z) ≤ d(x,y) + d(y,z) within tolerance, which is always the case for this pseudometric
    """
    try:
        # Calculate the three distances
        dist_xy = self.distance(x, y)
        dist_yz = self.distance(y, z)
        dist_xz = self.distance(x, z)

        # Check the triangle inequality
        return dist_xz <= dist_xy + dist_yz + tolerance

    except Exception as e:
        logger.error(f"Error checking triangle inequality: {str(e)}")
        raise

check_weak_identity

check_weak_identity(x, y)

Check if the projection pseudometric satisfies the weak identity property.

In a pseudometric, d(x,y) = 0 is allowed even when x ≠ y. For the projection pseudometric, this happens when two points have the same coordinate on the projection axis but differ in the other coordinate.

Parameters

x : Union[VectorType, MatrixType, Sequence[T], str, Callable] The first 2D point y : Union[VectorType, MatrixType, Sequence[T], str, Callable] The second 2D point

Returns

bool True if the pseudometric correctly handles the weak identity property

Source code in swarmauri_standard/pseudometrics/ProjectionPseudometricR2.py
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
def check_weak_identity(
    self,
    x: Union[VectorType, MatrixType, Sequence[T], str, Callable],
    y: Union[VectorType, MatrixType, Sequence[T], str, Callable],
) -> bool:
    """
    Check if the projection pseudometric satisfies the weak identity property.

    In a pseudometric, d(x,y) = 0 is allowed even when x ≠ y. For the projection
    pseudometric, this happens when two points have the same coordinate on the
    projection axis but differ in the other coordinate.

    Parameters
    ----------
    x : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The first 2D point
    y : Union[VectorType, MatrixType, Sequence[T], str, Callable]
        The second 2D point

    Returns
    -------
    bool
        True if the pseudometric correctly handles the weak identity property
    """
    try:
        # Extract coordinates
        x_coords = self._validate_and_extract_coordinates(x)
        y_coords = self._validate_and_extract_coordinates(y)

        # Calculate the distance
        dist = self.distance(x, y)

        # Check if points are different but have the same projection
        points_differ = x_coords != y_coords
        same_projection = (
            x_coords[self.projection_axis] == y_coords[self.projection_axis]
        )

        # If points differ but have same projection, distance should be 0
        if points_differ and same_projection:
            return abs(dist) < 1e-10

        # If points are the same, distance should be 0
        if not points_differ:
            return abs(dist) < 1e-10

        # If points differ and have different projections, distance should be > 0
        return dist > 0

    except Exception as e:
        logger.error(f"Error checking weak identity: {str(e)}")
        raise

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger