Skip to content

Class swarmauri_standard.seminorms.PartialSumSeminorm.PartialSumSeminorm

swarmauri_standard.seminorms.PartialSumSeminorm.PartialSumSeminorm

PartialSumSeminorm(
    start_idx=None, end_idx=None, indices=None, **kwargs
)

Bases: SeminormBase

Seminorm computed via summing only part of the vector.

This seminorm evaluates the norm on a partial segment of the input, ignoring the rest. It is particularly useful when only specific elements of a vector or matrix are relevant for a given analysis.

Attributes

type : Literal["PartialSumSeminorm"] The type identifier for this seminorm start_idx : Optional[int] Starting index for the summation (inclusive) end_idx : Optional[int] Ending index for the summation (exclusive) indices : Optional[Sequence[int]] Specific indices to include in the summation

Initialize the PartialSumSeminorm.

Parameters

start_idx : Optional[int], optional Starting index for the summation (inclusive), by default None end_idx : Optional[int], optional Ending index for the summation (exclusive), by default None indices : Optional[Sequence[int]], optional Specific indices to include in the summation, by default None

Notes

Either provide start_idx and end_idx to define a range, or provide indices to specify exact elements to include.

Source code in swarmauri_standard/seminorms/PartialSumSeminorm.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def __init__(
    self,
    start_idx: Optional[int] = None,
    end_idx: Optional[int] = None,
    indices: Optional[Sequence[int]] = None,
    **kwargs,
):
    """
    Initialize the PartialSumSeminorm.

    Parameters
    ----------
    start_idx : Optional[int], optional
        Starting index for the summation (inclusive), by default None
    end_idx : Optional[int], optional
        Ending index for the summation (exclusive), by default None
    indices : Optional[Sequence[int]], optional
        Specific indices to include in the summation, by default None

    Notes
    -----
    Either provide start_idx and end_idx to define a range, or
    provide indices to specify exact elements to include.
    """
    super().__init__(**kwargs)
    self.start_idx = start_idx
    self.end_idx = end_idx
    self.indices = indices

    # Validate that we have either range or indices
    if (start_idx is None or end_idx is None) and indices is None:
        logger.warning(
            "Neither range nor indices specified. Will use entire input."
        )
    elif indices is not None and (start_idx is not None or end_idx is not None):
        logger.warning("Both range and indices provided. Will use indices.")

    logger.debug(
        f"Initialized PartialSumSeminorm with start_idx={start_idx}, "
        f"end_idx={end_idx}, indices={indices}"
    )

type class-attribute instance-attribute

type = 'PartialSumSeminorm'

start_idx class-attribute instance-attribute

start_idx = start_idx

end_idx class-attribute instance-attribute

end_idx = end_idx

indices class-attribute instance-attribute

indices = indices

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=SEMINORM.value)

version class-attribute instance-attribute

version = '0.1.0'

compute

compute(x)

Compute the seminorm by summing the absolute values of the partial vector elements.

Parameters

x : InputType The input to compute the seminorm for

Returns

float The seminorm value

Raises

TypeError If the input type is not supported ValueError If the computation cannot be performed on the given input

Source code in swarmauri_standard/seminorms/PartialSumSeminorm.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def compute(self, x: InputType) -> float:
    """
    Compute the seminorm by summing the absolute values of the partial vector elements.

    Parameters
    ----------
    x : InputType
        The input to compute the seminorm for

    Returns
    -------
    float
        The seminorm value

    Raises
    ------
    TypeError
        If the input type is not supported
    ValueError
        If the computation cannot be performed on the given input
    """
    logger.debug(f"Computing PartialSumSeminorm for input of type {type(x)}")

    try:
        # Handle different input types
        if isinstance(x, (IVector, Sequence, list, tuple, str)):
            if isinstance(x, str):
                # Convert string to ASCII values
                x = [ord(char) for char in x]

            # Convert to flat array and extract partial data
            partial_data = self._extract_partial_data(x)
            # Sum absolute values
            return float(np.sum(np.abs(partial_data)))

        elif isinstance(x, (IMatrix, np.ndarray)):
            # Flatten matrix/array and extract partial data
            flat_data = np.asarray(x).flatten()
            partial_data = self._extract_partial_data(flat_data)
            # Sum absolute values
            return float(np.sum(np.abs(partial_data)))

        elif callable(x):
            # For callable objects, we need a domain to evaluate on
            domain = np.linspace(-1, 1, 100)
            values = np.array([x(t) for t in domain])
            partial_data = self._extract_partial_data(values)
            # Sum absolute values
            return float(np.sum(np.abs(partial_data)))

        else:
            raise TypeError(f"Unsupported input type: {type(x)}")

    except Exception as e:
        logger.error(f"Error computing PartialSumSeminorm: {str(e)}")
        raise

check_triangle_inequality

check_triangle_inequality(x, y)

Check if the triangle inequality property holds for the given inputs.

The triangle inequality states that: ||x + y|| ≤ ||x|| + ||y||

Parameters

x : InputType First input to check y : InputType Second input to check

Returns

bool True if the triangle inequality holds, False otherwise

Raises

TypeError If the input types are not supported or compatible ValueError If the check cannot be performed on the given inputs

Source code in swarmauri_standard/seminorms/PartialSumSeminorm.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def check_triangle_inequality(self, x: InputType, y: InputType) -> bool:
    """
    Check if the triangle inequality property holds for the given inputs.

    The triangle inequality states that:
    ||x + y|| ≤ ||x|| + ||y||

    Parameters
    ----------
    x : InputType
        First input to check
    y : InputType
        Second input to check

    Returns
    -------
    bool
        True if the triangle inequality holds, False otherwise

    Raises
    ------
    TypeError
        If the input types are not supported or compatible
    ValueError
        If the check cannot be performed on the given inputs
    """
    logger.debug(
        f"Checking triangle inequality for inputs of types {type(x)} and {type(y)}"
    )

    try:
        # Ensure inputs are of the same type
        if type(x) is not type(y):
            raise TypeError(
                f"Inputs must be of the same type, got {type(x)} and {type(y)}"
            )

        # Handle different input types
        if isinstance(x, (IVector, Sequence, list, tuple)):
            # Ensure inputs have the same length
            if len(x) != len(y):
                raise ValueError(
                    f"Inputs must have the same length, got {len(x)} and {len(y)}"
                )

            # Compute the sum of x and y
            z = [x[i] + y[i] for i in range(len(x))]

        elif isinstance(x, IMatrix):
            # Ensure matrices have the same shape
            x_array = np.asarray(x)
            y_array = np.asarray(y)
            if x_array.shape != y_array.shape:
                raise ValueError(
                    f"Matrices must have the same shape, got {x_array.shape} and {y_array.shape}"
                )

            # Compute the sum of x and y
            z = x_array + y_array

        elif isinstance(x, str):
            # For strings, we'll convert to ASCII and add
            x_ascii = [ord(char) for char in x]
            y_ascii = [ord(char) for char in y]
            if len(x_ascii) != len(y_ascii):
                raise ValueError(
                    f"Strings must have the same length, got {len(x)} and {len(y)}"
                )

            z = [x_ascii[i] + y_ascii[i] for i in range(len(x_ascii))]

        elif callable(x):
            # For callable objects, create a new callable that returns the sum
            def z(t):
                return x(t) + y(t)

        else:
            raise TypeError(f"Unsupported input type: {type(x)}")

        # Check triangle inequality
        norm_x_plus_y = self.compute(z)
        norm_x = self.compute(x)
        norm_y = self.compute(y)

        # Account for floating-point precision issues
        epsilon = 1e-10
        return norm_x_plus_y <= norm_x + norm_y + epsilon

    except Exception as e:
        logger.error(f"Error checking triangle inequality: {str(e)}")
        raise

check_scalar_homogeneity

check_scalar_homogeneity(x, alpha)

Check if the scalar homogeneity property holds for the given input and scalar.

The scalar homogeneity states that: ||αx|| = |α|·||x||

Parameters

x : InputType The input to check alpha : T The scalar to multiply by

Returns

bool True if scalar homogeneity holds, False otherwise

Raises

TypeError If the input type is not supported ValueError If the check cannot be performed on the given input

Source code in swarmauri_standard/seminorms/PartialSumSeminorm.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
def check_scalar_homogeneity(self, x: InputType, alpha: T) -> bool:
    """
    Check if the scalar homogeneity property holds for the given input and scalar.

    The scalar homogeneity states that:
    ||αx|| = |α|·||x||

    Parameters
    ----------
    x : InputType
        The input to check
    alpha : T
        The scalar to multiply by

    Returns
    -------
    bool
        True if scalar homogeneity holds, False otherwise

    Raises
    ------
    TypeError
        If the input type is not supported
    ValueError
        If the check cannot be performed on the given input
    """
    logger.debug(
        f"Checking scalar homogeneity for input of type {type(x)} with scalar {alpha}"
    )

    try:
        # Handle different input types
        if isinstance(x, (IVector, Sequence, list, tuple)):
            # Multiply each element by alpha
            scaled_x = [alpha * xi for xi in x]

        elif isinstance(x, IMatrix):
            # Multiply matrix by alpha
            x_array = np.asarray(x)
            scaled_x = alpha * x_array

        elif isinstance(x, str):
            # For strings, we'll convert to ASCII and scale
            x_ascii = [ord(char) for char in x]
            scaled_x = [alpha * val for val in x_ascii]

        elif callable(x):
            # For callable objects, create a new callable that returns the scaled value
            def scaled_x(t):
                return alpha * x(t)

        else:
            raise TypeError(f"Unsupported input type: {type(x)}")

        # Check scalar homogeneity
        norm_scaled_x = self.compute(scaled_x)
        norm_x = self.compute(x)
        abs_alpha = abs(alpha)

        # Account for floating-point precision issues
        epsilon = 1e-10
        return abs(norm_scaled_x - abs_alpha * norm_x) < epsilon

    except Exception as e:
        logger.error(f"Error checking scalar homogeneity: {str(e)}")
        raise

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger