Class swarmauri_standard.similarities.TanimotoSimilarity.TanimotoSimilarity
swarmauri_standard.similarities.TanimotoSimilarity.TanimotoSimilarity
Bases: SimilarityBase
Tanimoto Similarity implementation, a generalization of Jaccard for real vectors.
The Tanimoto coefficient is widely used in cheminformatics for measuring the similarity between molecular fingerprints. It is defined as the ratio of the intersection to the union when applied to binary vectors, and extends to real-valued vectors.
For real-valued vectors, the formula is: T(A,B) = (A·B) / (|A|^2 + |B|^2 - A·B)
where A·B is the dot product, and |A|^2 is the sum of squares of elements.
Attributes
type : Literal["TanimotoSimilarity"] Type identifier for this similarity measure
type
class-attribute
instance-attribute
type = 'TanimotoSimilarity'
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
similarity
similarity(x, y)
Calculate the Tanimoto similarity between two vectors.
Parameters
x : ComparableType First vector to compare y : ComparableType Second vector to compare
Returns
float Tanimoto similarity score between x and y, in range [0,1]
Raises
ValueError If vectors have different dimensions or are zero vectors TypeError If inputs cannot be converted to numeric arrays
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
similarities
similarities(x, ys)
Calculate Tanimoto similarities between one vector and multiple other vectors.
This implementation is optimized for multiple comparisons.
Parameters
x : ComparableType Reference vector ys : Sequence[ComparableType] Sequence of vectors to compare against the reference
Returns
List[float] List of Tanimoto similarity scores between x and each element in ys
Raises
ValueError If any vectors have different dimensions or are zero vectors TypeError If any inputs cannot be converted to numeric arrays
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
dissimilarity
dissimilarity(x, y)
Calculate the Tanimoto dissimilarity between two vectors.
Parameters
x : ComparableType First vector to compare y : ComparableType Second vector to compare
Returns
float Tanimoto dissimilarity score between x and y, in range [0,1]
Raises
ValueError If vectors have different dimensions or are zero vectors TypeError If inputs cannot be converted to numeric arrays
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
check_bounded
check_bounded()
Check if the Tanimoto similarity measure is bounded.
Tanimoto similarity is bounded in the range [0,1].
Returns
bool True, as Tanimoto similarity is bounded in [0,1]
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
262 263 264 265 266 267 268 269 270 271 272 273 |
|
check_reflexivity
check_reflexivity(x)
Check if the Tanimoto similarity measure is reflexive: s(x,x) = 1.
Parameters
x : ComparableType Vector to check reflexivity with
Returns
bool True if s(x,x) = 1, False otherwise
Raises
TypeError If the input cannot be converted to a numeric array ValueError If the input is a zero vector
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
check_symmetry
check_symmetry(x, y)
Check if the Tanimoto similarity measure is symmetric: s(x,y) = s(y,x).
Parameters
x : ComparableType First vector to compare y : ComparableType Second vector to compare
Returns
bool True if s(x,y) = s(y,x), False otherwise
Raises
ValueError If vectors have different dimensions or are zero vectors TypeError If inputs cannot be converted to numeric arrays
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
check_identity_of_discernibles
check_identity_of_discernibles(x, y)
Check if the Tanimoto similarity measure satisfies the identity of discernibles: s(x,y) = 1 ⟺ x = y (proportional vectors).
For Tanimoto similarity, s(x,y) = 1 if and only if x and y are proportional vectors.
Parameters
x : ComparableType First vector to compare y : ComparableType Second vector to compare
Returns
bool True if the identity of discernibles property holds, False otherwise
Raises
ValueError If vectors have different dimensions or are zero vectors TypeError If inputs cannot be converted to numeric arrays
Source code in swarmauri_standard/similarities/TanimotoSimilarity.py
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|
dissimilarities
dissimilarities(x, ys)
Calculate dissimilarities between one object and multiple other objects.
Parameters
x : ComparableType Reference object ys : Sequence[ComparableType] Sequence of objects to compare against the reference
Returns
List[float] List of dissimilarity scores between x and each element in ys
Raises
NotImplementedError This method must be implemented by subclasses ValueError If any objects are incomparable or have incompatible dimensions TypeError If any input types are not supported
Source code in swarmauri_base/similarities/SimilarityBase.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|