Skip to content

Class swarmauri_standard.tool_llms.GeminiToolModel.GeminiToolModel

swarmauri_standard.tool_llms.GeminiToolModel.GeminiToolModel

GeminiToolModel(*args, **kwargs)

Bases: ToolLLMBase

A class that interacts with Gemini-based LLM APIs to process conversations, handle tool calls, and convert messages for compatible schema. This model supports synchronous and asynchronous operations.

ATTRIBUTE DESCRIPTION
api_key

The API key used to authenticate requests to the Gemini API.

TYPE: SecretStr

allowed_models

List of supported model names.

TYPE: List[str]

name

The name of the Gemini model in use.

TYPE: str

type

The model type, set to "GeminiToolModel".

TYPE: Literal['GeminiToolModel']

Providers Resources: https://ai.google.dev/api/python/google/generativeai/protos/

Initializes the GeminiToolModel instance with the provided data.

PARAMETER DESCRIPTION
*args

Variable length argument list.

TYPE: Any DEFAULT: ()

**kwargs

Arbitrary keyword arguments containing initialization data.

TYPE: Any DEFAULT: {}

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
75
76
77
78
79
80
81
82
83
84
85
86
def __init__(self, *args: Any, **kwargs: Any) -> None:
    """
    Initializes the GeminiToolModel instance with the provided data.

    Args:
        *args (Any): Variable length argument list.
        **kwargs (Any): Arbitrary keyword arguments containing initialization data.
    """
    super().__init__(*args, **kwargs)
    self.allowed_models = self.allowed_models or self.get_allowed_models()
    if not self.name and self.allowed_models:
        self.name = self.allowed_models[0]

api_key instance-attribute

api_key

name class-attribute instance-attribute

name = 'gemini-1.5-pro'

type class-attribute instance-attribute

type = 'GeminiToolModel'

timeout class-attribute instance-attribute

timeout = 600.0

BASE_URL class-attribute instance-attribute

BASE_URL = "https://generativelanguage.googleapis.com/v1beta/models"

allowed_models class-attribute instance-attribute

allowed_models = allowed_models or get_allowed_models()

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=TOOL_LLM.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

get_schema_converter

get_schema_converter()

Returns the schema converter class for Gemini API.

RETURNS DESCRIPTION
Type[SchemaConverterBase]

Type[SchemaConverterBase]: The GeminiSchemaConverter class.

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
88
89
90
91
92
93
94
95
def get_schema_converter(self) -> Type[SchemaConverterBase]:
    """
    Returns the schema converter class for Gemini API.

    Returns:
        Type[SchemaConverterBase]: The GeminiSchemaConverter class.
    """
    return GeminiSchemaConverter

predict

predict(
    conversation,
    toolkit=None,
    tool_choice=None,
    multiturn=True,
    temperature=0.7,
    max_tokens=1024,
)

Generates model responses for a conversation synchronously.

PARAMETER DESCRIPTION
conversation

The conversation instance.

TYPE: Conversation

toolkit

Optional toolkit for handling tools.

TYPE: Toolkit DEFAULT: None

tool_choice

Tool selection strategy (not used in Gemini but included for API compatibility)

TYPE: Dict[str, Any] DEFAULT: None

multiturn

Whether to follow up a tool call with another LLM request.

TYPE: bool DEFAULT: True

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit for generation.

TYPE: int DEFAULT: 1024

RETURNS DESCRIPTION
IConversation

Updated conversation with model response.

TYPE: Conversation

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
@retry_on_status_codes((429, 529), max_retries=1)
def predict(
    self,
    conversation: Conversation,
    toolkit: Toolkit = None,
    tool_choice: Dict[str, Any] = None,
    multiturn: bool = True,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> Conversation:
    """
    Generates model responses for a conversation synchronously.

    Args:
        conversation (Conversation): The conversation instance.
        toolkit (Toolkit, optional): Optional toolkit for handling tools.
        tool_choice (Dict[str, Any], optional): Tool selection strategy (not used in Gemini but included for API compatibility)
        multiturn (bool): Whether to follow up a tool call with another LLM request.
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit for generation.

    Returns:
        IConversation: Updated conversation with model response.
    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    tool_config = {
        "function_calling_config": {"mode": "ANY"},
    }

    formatted_messages = self._format_messages(conversation.history)
    payload = {
        "contents": formatted_messages,
        "generation_config": generation_config,
        "safety_settings": self._safety_settings,
    }

    # Add tools if toolkit provided
    if toolkit:
        tools = self._schema_convert_tools(toolkit.tools)
        payload["tools"] = [tools]
        payload["tool_config"] = tool_config

    system_context = self._get_system_context(conversation.history)
    if system_context:
        payload["system_instruction"] = {"parts": [{"text": system_context}]}

    with httpx.Client(timeout=self.timeout) as client:
        response = client.post(
            f"{self.BASE_URL}/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
            json=payload,
            headers=self._headers,
        )
        response.raise_for_status()
        tool_response = response.json()

    # Check if there are tool calls
    has_tool_calls = False
    if "candidates" in tool_response and tool_response["candidates"]:
        content = tool_response["candidates"][0]["content"]
        formatted_messages.append(content)

        if "parts" in content:
            tool_calls = content["parts"]
            for part in tool_calls:
                if "functionCall" in part:
                    has_tool_calls = True
                    break

    # Process tool calls if present
    if has_tool_calls and toolkit:
        messages, tool_messages = self._process_tool_calls(
            tool_calls, toolkit, formatted_messages
        )
        if tool_messages:
            conversation.add_messages(tool_messages)

        # For multiturn, follow up with another request if there were tool calls
        if multiturn:
            payload["contents"] = messages
            if "tools" in payload:
                payload.pop("tools")
            if "tool_config" in payload:
                payload.pop("tool_config")

            with httpx.Client(timeout=self.timeout) as client:
                response = client.post(
                    f"{self.BASE_URL}/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
                    json=payload,
                    headers=self._headers,
                )
                response.raise_for_status()
                agent_response = response.json()

            if "candidates" in agent_response and agent_response["candidates"]:
                content = agent_response["candidates"][0]["content"]["parts"][0][
                    "text"
                ]
                conversation.add_message(AgentMessage(content=content))
    else:
        # If no tool calls, just add the assistant's message
        if "candidates" in tool_response and tool_response["candidates"]:
            content = tool_response["candidates"][0]["content"]["parts"][0]["text"]
            conversation.add_message(AgentMessage(content=content))

    return conversation

apredict async

apredict(
    conversation,
    toolkit=None,
    tool_choice=None,
    multiturn=True,
    temperature=0.7,
    max_tokens=1024,
)

Asynchronously generates model responses for a conversation.

PARAMETER DESCRIPTION
conversation

The conversation instance.

TYPE: Conversation

toolkit

Optional toolkit for handling tools.

TYPE: Toolkit DEFAULT: None

tool_choice

Tool selection strategy (not used in Gemini but included for API compatibility)

TYPE: Dict[str, Any] DEFAULT: None

multiturn

Whether to follow up a tool call with another LLM request.

TYPE: bool DEFAULT: True

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit for generation.

TYPE: int DEFAULT: 1024

RETURNS DESCRIPTION
Conversation

Updated conversation with model response.

TYPE: Conversation

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
@retry_on_status_codes((429, 529), max_retries=1)
async def apredict(
    self,
    conversation: Conversation,
    toolkit: Toolkit = None,
    tool_choice: Dict[str, Any] = None,
    multiturn: bool = True,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> Conversation:
    """
    Asynchronously generates model responses for a conversation.

    Args:
        conversation (Conversation): The conversation instance.
        toolkit (Toolkit, optional): Optional toolkit for handling tools.
        tool_choice (Dict[str, Any], optional): Tool selection strategy (not used in Gemini but included for API compatibility)
        multiturn (bool): Whether to follow up a tool call with another LLM request.
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit for generation.

    Returns:
        Conversation: Updated conversation with model response.
    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    tool_config = {
        "function_calling_config": {"mode": "ANY"},
    }

    formatted_messages = self._format_messages(conversation.history)
    payload = {
        "contents": formatted_messages,
        "generation_config": generation_config,
        "safety_settings": self._safety_settings,
    }

    # Add tools if toolkit provided
    if toolkit:
        tools = self._schema_convert_tools(toolkit.tools)
        payload["tools"] = [tools]
        payload["tool_config"] = tool_config

    system_context = self._get_system_context(conversation.history)
    if system_context:
        payload["system_instruction"] = {"parts": [{"text": system_context}]}

    async with httpx.AsyncClient(timeout=self.timeout) as client:
        response = await client.post(
            f"{self.BASE_URL}/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
            json=payload,
            headers=self._headers,
        )
        response.raise_for_status()
        tool_response = response.json()

    # Check if there are tool calls
    has_tool_calls = False
    if "candidates" in tool_response and tool_response["candidates"]:
        content = tool_response["candidates"][0]["content"]
        formatted_messages.append(content)

        if "parts" in content:
            tool_calls = content["parts"]
            for part in tool_calls:
                if "functionCall" in part:
                    has_tool_calls = True
                    break

    # Process tool calls if present
    if has_tool_calls and toolkit:
        messages, tool_messages = self._process_tool_calls(
            tool_calls, toolkit, formatted_messages
        )
        if tool_messages:
            conversation.add_messages(tool_messages)

        # For multiturn, follow up with another request if there were tool calls
        if multiturn:
            payload["contents"] = messages
            if "tools" in payload:
                payload.pop("tools")
            if "tool_config" in payload:
                payload.pop("tool_config")

            async with httpx.AsyncClient(timeout=self.timeout) as client:
                response = await client.post(
                    f"{self.BASE_URL}/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
                    json=payload,
                    headers=self._headers,
                )
                response.raise_for_status()
                agent_response = response.json()

            if "candidates" in agent_response and agent_response["candidates"]:
                content = agent_response["candidates"][0]["content"]["parts"][0][
                    "text"
                ]
                conversation.add_message(AgentMessage(content=content))
    else:
        # If no tool calls, just add the assistant's message
        if "candidates" in tool_response and tool_response["candidates"]:
            content = tool_response["candidates"][0]["content"]["parts"][0]["text"]
            conversation.add_message(AgentMessage(content=content))

    return conversation

stream

stream(
    conversation,
    toolkit=None,
    tool_choice=None,
    temperature=0.7,
    max_tokens=1024,
)

Streams response generation in real-time.

PARAMETER DESCRIPTION
conversation

The conversation instance.

TYPE: Conversation

toolkit

Optional toolkit for handling tools.

TYPE: Toolkit DEFAULT: None

tool_choice

Tool selection strategy (not used in Gemini but included for API compatibility)

TYPE: Dict[str, Any] DEFAULT: None

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit for generation.

TYPE: int DEFAULT: 1024

YIELDS DESCRIPTION
str

Iterator[str]: Streamed text chunks from the model response.

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
@retry_on_status_codes((429, 529), max_retries=1)
def stream(
    self,
    conversation: Conversation,
    toolkit: Toolkit = None,
    tool_choice: Dict[str, Any] = None,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> Iterator[str]:
    """
    Streams response generation in real-time.

    Args:
        conversation (Conversation): The conversation instance.
        toolkit (Toolkit, optional): Optional toolkit for handling tools.
        tool_choice (Dict[str, Any], optional): Tool selection strategy (not used in Gemini but included for API compatibility)
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit for generation.

    Yields:
        Iterator[str]: Streamed text chunks from the model response.
    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    tool_config = {
        "function_calling_config": {"mode": "ANY"},
    }

    formatted_messages = self._format_messages(conversation.history)
    payload = {
        "contents": formatted_messages,
        "generation_config": generation_config,
        "safety_settings": self._safety_settings,
    }

    # Add tools if toolkit provided
    if toolkit:
        tools = self._schema_convert_tools(toolkit.tools)
        payload["tools"] = [tools]
        payload["tool_config"] = tool_config

    system_context = self._get_system_context(conversation.history)
    if system_context:
        payload["system_instruction"] = {"parts": [{"text": system_context}]}

    # First, handle tool calls
    with httpx.Client(timeout=self.timeout) as client:
        response = client.post(
            f"{self.BASE_URL}/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
            json=payload,
            headers=self._headers,
        )
        response.raise_for_status()
        tool_response = response.json()

    # Check if there are tool calls
    has_tool_calls = False
    if "candidates" in tool_response and tool_response["candidates"]:
        content = tool_response["candidates"][0]["content"]
        formatted_messages.append(content)

        if "parts" in content:
            tool_calls = content["parts"]
            for part in tool_calls:
                if "functionCall" in part:
                    has_tool_calls = True
                    break

    # Process tool calls if present
    if has_tool_calls and toolkit:
        messages, tool_messages = self._process_tool_calls(
            tool_calls, toolkit, formatted_messages
        )
        if tool_messages:
            conversation.add_messages(tool_messages)

        # Now stream with tool results included
        payload["contents"] = messages
        if "tools" in payload:
            payload.pop("tools")
        if "tool_config" in payload:
            payload.pop("tool_config")

        with httpx.Client(timeout=self.timeout) as client:
            response = client.post(
                f"{self.BASE_URL}/{self.name}:streamGenerateContent?alt=sse&key={self.api_key.get_secret_value()}",
                json=payload,
                headers=self._headers,
            )
            response.raise_for_status()

        full_response = ""
        for line in response.iter_lines():
            line_str = line.decode("utf-8") if isinstance(line, bytes) else line
            if not line_str or line_str.startswith("data: [DONE]"):
                continue

            json_str = line_str.replace("data: ", "")
            if json_str:
                try:
                    response_data = json.loads(json_str)
                    if (
                        "candidates" in response_data
                        and response_data["candidates"]
                    ):
                        candidate = response_data["candidates"][0]
                        if (
                            "content" in candidate
                            and "parts" in candidate["content"]
                        ):
                            parts = candidate["content"]["parts"]
                            if parts and "text" in parts[0]:
                                chunk = parts[0]["text"]
                                full_response += chunk
                                yield chunk
                except json.JSONDecodeError:
                    pass

        conversation.add_message(AgentMessage(content=full_response))
    else:
        # If no tool calls, just stream the response directly
        if "candidates" in tool_response and tool_response["candidates"]:
            content = tool_response["candidates"][0]["content"]["parts"][0]["text"]
            conversation.add_message(AgentMessage(content=content))
            yield content

astream async

astream(
    conversation,
    toolkit=None,
    tool_choice=None,
    temperature=0.7,
    max_tokens=1024,
)

Asynchronously streams response generation in real-time.

PARAMETER DESCRIPTION
conversation

The conversation instance.

TYPE: Conversation

toolkit

Optional toolkit for handling tools.

TYPE: Toolkit DEFAULT: None

tool_choice

Tool selection strategy (not used in Gemini but included for API compatibility)

TYPE: Dict[str, Any] DEFAULT: None

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit for generation.

TYPE: int DEFAULT: 1024

YIELDS DESCRIPTION
AsyncIterator[str]

AsyncIterator[str]: Asynchronously streamed text chunks from the model response.

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
@retry_on_status_codes((429, 529), max_retries=1)
async def astream(
    self,
    conversation: Conversation,
    toolkit: Toolkit = None,
    tool_choice: Dict[str, Any] = None,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> AsyncIterator[str]:
    """
    Asynchronously streams response generation in real-time.

    Args:
        conversation (Conversation): The conversation instance.
        toolkit (Toolkit, optional): Optional toolkit for handling tools.
        tool_choice (Dict[str, Any], optional): Tool selection strategy (not used in Gemini but included for API compatibility)
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit for generation.

    Yields:
        AsyncIterator[str]: Asynchronously streamed text chunks from the model response.
    """
    generation_config = {
        "temperature": temperature,
        "top_p": 0.95,
        "top_k": 0,
        "max_output_tokens": max_tokens,
    }

    tool_config = {
        "function_calling_config": {"mode": "ANY"},
    }

    formatted_messages = self._format_messages(conversation.history)
    payload = {
        "contents": formatted_messages,
        "generation_config": generation_config,
        "safety_settings": self._safety_settings,
    }

    # Add tools if toolkit provided
    if toolkit:
        tools = self._schema_convert_tools(toolkit.tools)
        payload["tools"] = [tools]
        payload["tool_config"] = tool_config

    system_context = self._get_system_context(conversation.history)
    if system_context:
        payload["system_instruction"] = {"parts": [{"text": system_context}]}

    # First, handle tool calls
    async with httpx.AsyncClient(timeout=self.timeout) as client:
        response = await client.post(
            f"{self.BASE_URL}/{self.name}:generateContent?key={self.api_key.get_secret_value()}",
            json=payload,
            headers=self._headers,
        )
        response.raise_for_status()
        tool_response = response.json()

    # Check if there are tool calls
    has_tool_calls = False
    if "candidates" in tool_response and tool_response["candidates"]:
        content = tool_response["candidates"][0]["content"]
        formatted_messages.append(content)

        if "parts" in content:
            tool_calls = content["parts"]
            for part in tool_calls:
                if "functionCall" in part:
                    has_tool_calls = True
                    break

    # Process tool calls if present
    if has_tool_calls and toolkit:
        messages, tool_messages = self._process_tool_calls(
            tool_calls, toolkit, formatted_messages
        )
        if tool_messages:
            conversation.add_messages(tool_messages)

        # Now stream with tool results included
        payload["contents"] = messages
        if "tools" in payload:
            payload.pop("tools")
        if "tool_config" in payload:
            payload.pop("tool_config")

        async with httpx.AsyncClient(timeout=self.timeout) as client:
            response = await client.post(
                f"{self.BASE_URL}/{self.name}:streamGenerateContent?alt=sse&key={self.api_key.get_secret_value()}",
                json=payload,
                headers=self._headers,
            )
            response.raise_for_status()

        full_response = ""
        async for line in response.aiter_lines():
            if not line or line == "data: [DONE]":
                continue

            json_str = line.replace("data: ", "")
            if json_str:
                try:
                    response_data = json.loads(json_str)
                    if (
                        "candidates" in response_data
                        and response_data["candidates"]
                    ):
                        candidate = response_data["candidates"][0]
                        if (
                            "content" in candidate
                            and "parts" in candidate["content"]
                        ):
                            parts = candidate["content"]["parts"]
                            if parts and "text" in parts[0]:
                                chunk = parts[0]["text"]
                                full_response += chunk
                                yield chunk
                except json.JSONDecodeError:
                    pass

        conversation.add_message(AgentMessage(content=full_response))
    else:
        # If no tool calls, just stream the response directly
        if "candidates" in tool_response and tool_response["candidates"]:
            content = tool_response["candidates"][0]["content"]["parts"][0]["text"]
            conversation.add_message(AgentMessage(content=content))
            yield content

batch

batch(
    conversations,
    toolkit=None,
    tool_choice=None,
    temperature=0.7,
    max_tokens=1024,
)

Processes multiple conversations synchronously.

PARAMETER DESCRIPTION
conversations

List of conversation instances.

TYPE: List[Conversation]

toolkit

Optional toolkit for handling tools.

TYPE: Toolkit DEFAULT: None

tool_choice

Tool selection strategy (not used in Gemini but included for API compatibility)

TYPE: Dict[str, Any] DEFAULT: None

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit for generation.

TYPE: int DEFAULT: 1024

RETURNS DESCRIPTION
List[Conversation]

List[Conversation]: List of updated conversations with model responses.

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
def batch(
    self,
    conversations: List[Conversation],
    toolkit: Toolkit = None,
    tool_choice: Dict[str, Any] = None,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> List[Conversation]:
    """
    Processes multiple conversations synchronously.

    Args:
        conversations (List[Conversation]): List of conversation instances.
        toolkit (Toolkit, optional): Optional toolkit for handling tools.
        tool_choice (Dict[str, Any], optional): Tool selection strategy (not used in Gemini but included for API compatibility)
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit for generation.

    Returns:
        List[Conversation]: List of updated conversations with model responses.
    """
    results = []
    for conv in conversations:
        result = self.predict(
            conv,
            toolkit=toolkit,
            tool_choice=tool_choice,
            temperature=temperature,
            max_tokens=max_tokens,
        )
        results.append(result)
    return results

abatch async

abatch(
    conversations,
    toolkit=None,
    tool_choice=None,
    temperature=0.7,
    max_tokens=1024,
    max_concurrent=5,
)

Asynchronously processes multiple conversations with concurrency control.

PARAMETER DESCRIPTION
conversations

List of conversation instances.

TYPE: List[Conversation]

toolkit

Optional toolkit for handling tools.

TYPE: Toolkit DEFAULT: None

tool_choice

Tool selection strategy (not used in Gemini but included for API compatibility)

TYPE: Dict[str, Any] DEFAULT: None

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit for generation.

TYPE: int DEFAULT: 1024

max_concurrent

Maximum number of concurrent asynchronous tasks.

TYPE: int DEFAULT: 5

RETURNS DESCRIPTION
List[Conversation]

List[Conversation]: List of updated conversations with model responses.

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
async def abatch(
    self,
    conversations: List[Conversation],
    toolkit: Toolkit = None,
    tool_choice: Dict[str, Any] = None,
    temperature: float = 0.7,
    max_tokens: int = 1024,
    max_concurrent: int = 5,
) -> List[Conversation]:
    """
    Asynchronously processes multiple conversations with concurrency control.

    Args:
        conversations (List[Conversation]): List of conversation instances.
        toolkit (Toolkit, optional): Optional toolkit for handling tools.
        tool_choice (Dict[str, Any], optional): Tool selection strategy (not used in Gemini but included for API compatibility)
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit for generation.
        max_concurrent (int): Maximum number of concurrent asynchronous tasks.

    Returns:
        List[Conversation]: List of updated conversations with model responses.
    """
    semaphore = asyncio.Semaphore(max_concurrent)

    async def process_conversation(conv: Conversation) -> Conversation:
        async with semaphore:
            return await self.apredict(
                conv,
                toolkit=toolkit,
                tool_choice=tool_choice,
                temperature=temperature,
                max_tokens=max_tokens,
            )

    tasks = [process_conversation(conv) for conv in conversations]
    return await asyncio.gather(*tasks)

get_allowed_models

get_allowed_models()

Returns the list of allowed models for Gemini API.

RETURNS DESCRIPTION
List[str]

List[str]: A list of allowed model names.

Source code in swarmauri_standard/tool_llms/GeminiToolModel.py
784
785
786
787
788
789
790
791
def get_allowed_models(self) -> List[str]:
    """
    Returns the list of allowed models for Gemini API.

    Returns:
        List[str]: A list of allowed model names.
    """
    return ["gemini-1.5-pro", "gemini-1.5-flash"]

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

add_allowed_model

add_allowed_model(model)

Add a new model to the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is already in the allowed models list.

Source code in swarmauri_base/tool_llms/ToolLLMBase.py
35
36
37
38
39
40
41
42
43
44
def add_allowed_model(self, model: str) -> None:
    """
    Add a new model to the list of allowed models.

    Raises:
        ValueError: If the model is already in the allowed models list.
    """
    if model in self.allowed_models:
        raise ValueError(f"Model '{model}' is already allowed.")
    self.allowed_models.append(model)

remove_allowed_model

remove_allowed_model(model)

Remove a model from the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is not in the allowed models list.

Source code in swarmauri_base/tool_llms/ToolLLMBase.py
46
47
48
49
50
51
52
53
54
55
def remove_allowed_model(self, model: str) -> None:
    """
    Remove a model from the list of allowed models.

    Raises:
        ValueError: If the model is not in the allowed models list.
    """
    if model not in self.allowed_models:
        raise ValueError(f"Model '{model}' is not in the allowed models list.")
    self.allowed_models.remove(model)