Skip to content

Class swarmauri_standard.tool_llms.ToolLLM.ToolLLM

swarmauri_standard.tool_llms.ToolLLM.ToolLLM

ToolLLM(**data)

Bases: ToolLLMBase

Initialize the OpenAIToolModel class with the provided data.

PARAMETER DESCRIPTION
**data

Arbitrary keyword arguments containing initialization data.

TYPE: dict[str, Any] DEFAULT: {}

Source code in swarmauri_standard/tool_llms/ToolLLM.py
25
26
27
28
29
30
31
32
33
34
35
36
37
def __init__(self, **data: dict[str, Any]) -> None:
    """
    Initialize the OpenAIToolModel class with the provided data.

    Args:
        **data: Arbitrary keyword arguments containing initialization data.
    """
    super().__init__(**data)
    self._headers = {
        "Authorization": f"Bearer {self.api_key.get_secret_value()}",
        "Content-Type": "application/json",
    }
    self.allowed_models = self.allowed_models or self.get_allowed_models()

allowed_models instance-attribute

allowed_models = allowed_models or get_allowed_models()

type class-attribute instance-attribute

type = 'ToolLLMBase'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=TOOL_LLM.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

api_key class-attribute instance-attribute

api_key = None

timeout class-attribute instance-attribute

timeout = 600.0

BASE_URL class-attribute instance-attribute

BASE_URL = None

get_schema_converter

get_schema_converter()
Source code in swarmauri_standard/tool_llms/ToolLLM.py
39
40
def get_schema_converter(self) -> Type["SchemaConverterBase"]:
    return OpenAISchemaConverter()

predict

predict(
    conversation,
    toolkit,
    tool_choice,
    multiturn=True,
    temperature=0.7,
    max_tokens=1024,
)

Makes a synchronous prediction using the Groq model.

PARAMETER DESCRIPTION
conversation

Conversation instance with message history.

TYPE: Conversation

toolkit

Optional toolkit for tool conversion.

TYPE: Tookit

tool_choice

Tool selection strategy.

TYPE: dict[str, Any]

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit.

TYPE: int DEFAULT: 1024

RETURNS DESCRIPTION
IConversation

Updated conversation with agent responses and tool calls.

TYPE: IConversation

Source code in swarmauri_standard/tool_llms/ToolLLM.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def predict(
    self,
    conversation: Conversation,
    toolkit: Toolkit,
    tool_choice: dict[str, Any],
    multiturn: bool = True,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> IConversation:
    """
    Makes a synchronous prediction using the Groq model.

    Parameters:
        conversation (Conversation): Conversation instance with message history.
        toolkit (Tookit): Optional toolkit for tool conversion.
        tool_choice (dict[str, Any]): Tool selection strategy.
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit.

    Returns:
        IConversation: Updated conversation with agent responses and tool calls.
    """
    formatted_messages = self._format_messages(conversation.history)
    payload = {
        "model": self.name,
        "messages": formatted_messages,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "tools": self._schema_convert_tools(toolkit.tools) if toolkit else None,
        "tool_choice": tool_choice or "auto",
    }

    with httpx.Client(timeout=self.timeout) as client:
        response = client.post(self.BASE_URL, headers=self._headers, json=payload)
        response.raise_for_status()
        tool_response = response.json()

    messages = [formatted_messages[-1], tool_response["choices"][0]["message"]]
    tool_calls = tool_response["choices"][0]["message"].get("tool_calls", [])
    messages = self._process_tool_calls(tool_calls, toolkit, messages)

    # Add tool messages to Conversation to enable Conversation hooks
    tool_messages = [
        FunctionMessage(
            tool_call_id=m["tool_call_id"], name=m["name"], content=m["content"]
        )
        for m in messages
        if m["role"] == "tool"
    ]

    conversation.add_messages(tool_messages)

    if multiturn:
        payload["messages"] = messages
        payload.pop("tools", None)
        payload.pop("tool_choice", None)

        with httpx.Client(timeout=self.timeout) as client:
            response = client.post(
                self.BASE_URL, headers=self._headers, json=payload
            )
            response.raise_for_status()

        agent_response = response.json()

        agent_message = AgentMessage(
            content=agent_response["choices"][0]["message"]["content"]
        )
        conversation.add_message(agent_message)
    return conversation

apredict async

apredict(
    conversation,
    toolkit,
    tool_choice,
    multiturn=True,
    temperature=0.7,
    max_tokens=1024,
)

Makes an asynchronous prediction using the OpenAI model.

PARAMETER DESCRIPTION
conversation

Conversation instance with message history.

TYPE: Conversation

toolkit

Optional toolkit for tool conversion.

TYPE: Tookit

tool_choice

Tool selection strategy.

TYPE: dict[str, Any]

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit.

TYPE: int DEFAULT: 1024

RETURNS DESCRIPTION
Conversation

Updated conversation with agent responses and tool calls.

TYPE: IConversation

Source code in swarmauri_standard/tool_llms/ToolLLM.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
async def apredict(
    self,
    conversation: Conversation,
    toolkit: Toolkit,
    tool_choice: dict[str, Any],
    multiturn: bool = True,
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> IConversation:
    """
    Makes an asynchronous prediction using the OpenAI model.

    Parameters:
        conversation (Conversation): Conversation instance with message history.
        toolkit (Tookit): Optional toolkit for tool conversion.
        tool_choice (dict[str, Any]): Tool selection strategy.
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit.

    Returns:
        Conversation: Updated conversation with agent responses and tool calls.
    """
    formatted_messages = self._format_messages(conversation.history)
    payload = {
        "model": self.name,
        "messages": formatted_messages,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "tools": self._schema_convert_tools(toolkit.tools) if toolkit else None,
        "tool_choice": tool_choice or "auto",
    }

    async with httpx.AsyncClient(timeout=self.timeout) as client:
        response = await client.post(
            self.BASE_URL, headers=self._headers, json=payload
        )
        response.raise_for_status()
        tool_response = response.json()

    messages = [formatted_messages[-1], tool_response["choices"][0]["message"]]
    tool_calls = tool_response["choices"][0]["message"].get("tool_calls", [])
    messages = self._process_tool_calls(tool_calls, toolkit, messages)

    # Add tool messages to Conversation to enable Conversation hooks
    tool_messages = [
        FunctionMessage(
            tool_call_id=m["tool_call_id"], name=m["name"], content=m["content"]
        )
        for m in messages
        if m["role"] == "tool"
    ]

    conversation.add_messages(tool_messages)

    if multiturn:
        payload["messages"] = messages
        payload.pop("tools", None)
        payload.pop("tool_choice", None)

        async with httpx.AsyncClient(timeout=self.timeout) as client:
            response = await client.post(
                self.BASE_URL, headers=self._headers, json=payload
            )
            response.raise_for_status()

        agent_response = response.json()

        agent_message = AgentMessage(
            content=agent_response["choices"][0]["message"]["content"]
        )
        conversation.add_message(agent_message)
    return conversation

stream

stream(
    conversation,
    toolkit,
    tool_choice,
    temperature=0.7,
    max_tokens=1024,
)

Streams response from OpenAI model in real-time.

PARAMETER DESCRIPTION
conversation

Conversation instance with message history.

TYPE: Conversation

toolkit

Optional toolkit for tool conversion.

TYPE: Tookit

tool_choice

Tool selection strategy.

TYPE: dict[str, Any]

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit.

TYPE: int DEFAULT: 1024

YIELDS DESCRIPTION
str

Iterator[str]: Streamed response content.

Source code in swarmauri_standard/tool_llms/ToolLLM.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def stream(
    self,
    conversation: Conversation,
    toolkit: Toolkit,
    tool_choice: dict[str, Any],
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> Iterator[str]:
    """
    Streams response from OpenAI model in real-time.

    Parameters:
        conversation (Conversation): Conversation instance with message history.
        toolkit (Tookit): Optional toolkit for tool conversion.
        tool_choice: Tool selection strategy.
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit.

    Yields:
        Iterator[str]: Streamed response content.
    """

    formatted_messages = self._format_messages(conversation.history)

    payload = {
        "model": self.name,
        "messages": formatted_messages,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "tools": self._schema_convert_tools(toolkit.tools) if toolkit else [],
        "tool_choice": tool_choice or "auto",
    }

    with httpx.Client(timeout=self.timeout) as client:
        response = client.post(self.BASE_URL, headers=self._headers, json=payload)
        response.raise_for_status()

    tool_response = response.json()

    messages = [formatted_messages[-1], tool_response["choices"][0]["message"]]
    tool_calls = tool_response["choices"][0]["message"].get("tool_calls", [])

    messages = self._process_tool_calls(tool_calls, toolkit, messages)

    payload["messages"] = messages
    payload["stream"] = True
    payload.pop("tools", None)
    payload.pop("tool_choice", None)

    with httpx.Client(timeout=self.timeout) as client:
        response = client.post(self.BASE_URL, headers=self._headers, json=payload)
        response.raise_for_status()

    message_content = ""

    for line in response.iter_lines():
        json_str = line.replace("data: ", "")
        try:
            if json_str:
                chunk = json.loads(json_str)
                if chunk["choices"][0]["delta"]:
                    delta = chunk["choices"][0]["delta"]["content"]
                    message_content += delta
                    yield delta
        except json.JSONDecodeError:
            pass

    conversation.add_message(AgentMessage(content=message_content))

astream async

astream(
    conversation,
    toolkit,
    tool_choice,
    temperature=0.7,
    max_tokens=1024,
)

Asynchronously streams response from Groq model.

PARAMETER DESCRIPTION
conversation

Conversation instance with message history.

TYPE: Conversation

toolkit

Optional toolkit for tool conversion.

TYPE: Tookit

tool_choice

Tool selection strategy.

TYPE: dict[str, Any]

temperature

Sampling temperature.

TYPE: float DEFAULT: 0.7

max_tokens

Maximum token limit.

TYPE: int DEFAULT: 1024

YIELDS DESCRIPTION
AsyncIterator[str]

AsyncIterator[str]: Streamed response content.

Source code in swarmauri_standard/tool_llms/ToolLLM.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
async def astream(
    self,
    conversation: Conversation,
    toolkit: Toolkit,
    tool_choice: dict[str, Any],
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> AsyncIterator[str]:
    """
    Asynchronously streams response from Groq model.

    Parameters:
        conversation (Conversation): Conversation instance with message history.
        toolkit (Tookit): Optional toolkit for tool conversion.
        tool_choice (dict[str, Any]): Tool selection strategy.
        temperature (float): Sampling temperature.
        max_tokens (int): Maximum token limit.

    Yields:
        AsyncIterator[str]: Streamed response content.
    """
    formatted_messages = self._format_messages(conversation.history)

    payload = {
        "model": self.name,
        "messages": formatted_messages,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "tools": self._schema_convert_tools(toolkit.tools) if toolkit else [],
        "tool_choice": tool_choice or "auto",
    }

    async with httpx.AsyncClient(timeout=self.timeout) as client:
        response = await client.post(
            self.BASE_URL, headers=self._headers, json=payload
        )
        response.raise_for_status()

    tool_response = response.json()

    messages = [formatted_messages[-1], tool_response["choices"][0]["message"]]
    tool_calls = tool_response["choices"][0]["message"].get("tool_calls", [])

    messages = self._process_tool_calls(tool_calls, toolkit, messages)

    payload["messages"] = messages
    payload["stream"] = True
    payload.pop("tools", None)
    payload.pop("tool_choice", None)

    async with httpx.AsyncClient(timeout=self.timeout) as client:
        agent_response = await client.post(
            self.BASE_URL, headers=self._headers, json=payload
        )
        agent_response.raise_for_status()

    message_content = ""
    async for line in agent_response.aiter_lines():
        json_str = line.replace("data: ", "")
        try:
            if json_str:
                chunk = json.loads(json_str)
                if chunk["choices"][0]["delta"]:
                    delta = chunk["choices"][0]["delta"]["content"]
                    message_content += delta
                    yield delta
        except json.JSONDecodeError:
            pass
    conversation.add_message(AgentMessage(content=message_content))

batch

batch(
    conversations,
    toolkit,
    tool_choice,
    temperature=0.7,
    max_tokens=1024,
)

Processes a batch of conversations and generates responses for each sequentially.

PARAMETER DESCRIPTION
conversations

List of conversations to process.

TYPE: List[Conversation]

temperature

Sampling temperature for response diversity.

TYPE: float DEFAULT: 0.7

tool_choice dict[str, Any])

Tool selection strategy.

toolkit

Optional toolkit for tool conversion.

TYPE: Tookit

max_tokens

Maximum tokens for each response.

TYPE: int DEFAULT: 1024

RETURNS DESCRIPTION
List[Conversation]

List[IConversation]: List of updated conversations with model responses.

Source code in swarmauri_standard/tool_llms/ToolLLM.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def batch(
    self,
    conversations: List[Conversation],
    toolkit: Toolkit,
    tool_choice: dict[str, Any],
    temperature: float = 0.7,
    max_tokens: int = 1024,
) -> List[Conversation]:
    """
    Processes a batch of conversations and generates responses for each sequentially.

    Args:
        conversations (List[Conversation]): List of conversations to process.
        temperature (float): Sampling temperature for response diversity.
        tool_choice dict[str, Any]): Tool selection strategy.
        toolkit (Tookit): Optional toolkit for tool conversion.
        max_tokens (int): Maximum tokens for each response.

    Returns:
        List[IConversation]: List of updated conversations with model responses.
    """
    return [
        self.predict(
            conv,
            toolkit=toolkit,
            tool_choice=tool_choice,
            temperature=temperature,
            max_tokens=max_tokens,
        )
        for conv in conversations
    ]

abatch async

abatch(
    conversations,
    toolkit,
    tool_choice,
    temperature=0.7,
    max_tokens=1024,
    max_concurrent=5,
)

Async method for processing a batch of conversations concurrently.

PARAMETER DESCRIPTION
conversations

List of conversations to process.

TYPE: List[Conversation]

temperature

Sampling temperature for response diversity.

TYPE: float DEFAULT: 0.7

tool_choice

Tool selection strategy.

TYPE: dict[str, Any]

toolkit

Optional toolkit for tool conversion.s

TYPE: Tookit

max_tokens

Maximum tokens for each response.

TYPE: int DEFAULT: 1024

max_concurrent

Maximum number of concurrent requests.

TYPE: int DEFAULT: 5

RETURNS DESCRIPTION
List[Conversation]

List[Conversation]: List of updated conversations with model responses.

Source code in swarmauri_standard/tool_llms/ToolLLM.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
async def abatch(
    self,
    conversations: List[Conversation],
    toolkit: Toolkit,
    tool_choice: dict[str, Any],
    temperature: float = 0.7,
    max_tokens: int = 1024,
    max_concurrent: int = 5,
) -> List[Conversation]:
    """
    Async method for processing a batch of conversations concurrently.

    Args:
        conversations (List[Conversation]): List of conversations to process.
        temperature (float): Sampling temperature for response diversity.
        tool_choice (dict[str, Any]): Tool selection strategy.
        toolkit (Tookit): Optional toolkit for tool conversion.s
        max_tokens (int): Maximum tokens for each response.
        max_concurrent (int): Maximum number of concurrent requests.

    Returns:
        List[Conversation]: List of updated conversations with model responses.
    """
    semaphore = asyncio.Semaphore(max_concurrent)

    async def process_conversation(conv):
        async with semaphore:
            return await self.apredict(
                conv,
                toolkit=toolkit,
                tool_choice=tool_choice,
                temperature=temperature,
                max_tokens=max_tokens,
            )

    tasks = [process_conversation(conv) for conv in conversations]
    return await asyncio.gather(*tasks)

get_allowed_models

get_allowed_models()

Get the list of allowed models for the OpenAI API.

RETURNS DESCRIPTION
List[str]

List[str]: List of allowed models.

Source code in swarmauri_standard/tool_llms/ToolLLM.py
445
446
447
448
449
450
451
452
def get_allowed_models(self) -> List[str]:
    """
    Get the list of allowed models for the OpenAI API.

    Returns:
        List[str]: List of allowed models.
    """
    pass

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

add_allowed_model

add_allowed_model(model)

Add a new model to the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is already in the allowed models list.

Source code in swarmauri_base/tool_llms/ToolLLMBase.py
35
36
37
38
39
40
41
42
43
44
def add_allowed_model(self, model: str) -> None:
    """
    Add a new model to the list of allowed models.

    Raises:
        ValueError: If the model is already in the allowed models list.
    """
    if model in self.allowed_models:
        raise ValueError(f"Model '{model}' is already allowed.")
    self.allowed_models.append(model)

remove_allowed_model

remove_allowed_model(model)

Remove a model from the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is not in the allowed models list.

Source code in swarmauri_base/tool_llms/ToolLLMBase.py
46
47
48
49
50
51
52
53
54
55
def remove_allowed_model(self, model: str) -> None:
    """
    Remove a model from the list of allowed models.

    Raises:
        ValueError: If the model is not in the allowed models list.
    """
    if model not in self.allowed_models:
        raise ValueError(f"Model '{model}' is not in the allowed models list.")
    self.allowed_models.remove(model)