Skip to content

Class swarmauri_standard.tools.CodeExtractorTool.CodeExtractorTool

swarmauri_standard.tools.CodeExtractorTool.CodeExtractorTool

Bases: ToolBase

version class-attribute instance-attribute

version = '1.0.0'

parameters class-attribute instance-attribute

parameters = Field(
    default_factory=lambda: [
        Parameter(
            name="file_name",
            input_type="string",
            description="The name of the Python file to extract code from.",
            required=True,
        ),
        Parameter(
            name="extract_documentation",
            input_type="bool",
            description="Whether to start extracting code from the documentation string.",
            required=False,
            default=True,
        ),
        Parameter(
            name="to_be_ignored",
            input_type="list",
            description="A list of function or variable names to be ignored during code extraction.",
            required=False,
            default=[],
        ),
    ]
)

name class-attribute instance-attribute

name = 'CodeExtractorTool'

description class-attribute instance-attribute

description = 'Extracts code from a Python file.'

type class-attribute instance-attribute

type = 'CodeExtractorTool'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=TOOL.value)

extract_code

extract_code(
    file_name, extract_documentation=True, to_be_ignored=[]
)

Extracts code from a Python file.

PARAMETER DESCRIPTION
file_name

The name of the Python file to extract code from.

TYPE: str

extract_documentation

Whether to start extracting code from the documentation string.

TYPE: bool DEFAULT: True

to_be_ignored

A list of function or variable names to be ignored during code extraction.

TYPE: List[str] DEFAULT: []

RETURNS DESCRIPTION
str

Extracted code.

TYPE: str

Source code in swarmauri_standard/tools/CodeExtractorTool.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def extract_code(
    self,
    file_name: str,
    extract_documentation: bool = True,
    to_be_ignored: List[str] = [],
) -> str:
    """
    Extracts code from a Python file.

    Args:
        file_name (str): The name of the Python file to extract code from.
        extract_documentation (bool): Whether to start extracting code from the documentation string.
        to_be_ignored (List[str]): A list of function or variable names to be ignored during code extraction.

    Returns:
        str: Extracted code.
    """
    response_lines = []

    # Read the current file and collect relevant lines
    with open(file_name, "r", encoding="utf-8") as f:
        documentation_start = False
        first = not extract_documentation

        for line in f:
            stripped_line = line.strip()

            # Check if the line starts or ends the documentation string
            if first and '"""' in stripped_line:
                documentation_start = not documentation_start
                first = False
                continue

            if documentation_start and '"""' in stripped_line:
                documentation_start = not documentation_start
                continue

            if documentation_start and not extract_documentation:
                continue

            # Stop collecting lines when reaching the specified comment
            if "#" in stripped_line and "non-essentials" in stripped_line:
                break

            # Collect the line
            response_lines.append(line)

    response = "".join(response_lines)

    # Parse the response with AST
    tree = ast.parse(response)

    # Filter out nodes based on the `to_be_ignored` set
    class CodeCleaner(ast.NodeTransformer):
        def visit_FunctionDef(self, node):
            if any(pattern in node.name for pattern in to_be_ignored):
                return None
            return node

        def visit_Assign(self, node):
            if any(
                isinstance(target, ast.Name)
                and any(pattern in target.id for pattern in to_be_ignored)
                for target in node.targets
            ):
                return None
            return node

    # Transform the AST to remove ignored nodes
    cleaned_tree = CodeCleaner().visit(tree)

    # Convert the cleaned AST back to source code
    cleaned_code = ast.unparse(cleaned_tree)

    # Return the cleaned code
    return cleaned_code

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

call

call(*args, **kwargs)

File: ToolBase.py Class: ToolBase Method: call

Alias for call to conform to ITool interface.

Source code in swarmauri_base/tools/ToolBase.py
28
29
30
31
32
33
34
35
36
def call(self, *args, **kwargs) -> Any:
    """
    File: ToolBase.py
    Class: ToolBase
    Method: call

    Alias for __call__ to conform to ITool interface.
    """
    return self.__call__(*args, **kwargs)

batch

batch(inputs, *args, **kwargs)

File: ToolBase.py Class: ToolBase Method: batch

Default batch implementation: calls call on each item in inputs. Subclasses can override for optimized bulk behavior.

Source code in swarmauri_base/tools/ToolBase.py
49
50
51
52
53
54
55
56
57
58
59
60
61
def batch(self, inputs: List[Any], *args, **kwargs) -> List[Any]:
    """
    File: ToolBase.py
    Class: ToolBase
    Method: batch

    Default batch implementation: calls __call__ on each item in `inputs`.
    Subclasses can override for optimized bulk behavior.
    """
    results: List[Any] = []
    for inp in inputs:
        results.append(self.__call__(inp, **kwargs))
    return results