Skip to content

Class swarmauri_standard.tts.OpenaiTTS.OpenaiTTS

swarmauri_standard.tts.OpenaiTTS.OpenaiTTS

OpenaiTTS(**data)

Bases: TTSBase

A class to interact with OpenAI's Text-to-Speech API, allowing for synchronous and asynchronous text-to-speech synthesis, as well as streaming capabilities.

ATTRIBUTE DESCRIPTION
api_key

The API key for accessing OpenAI's TTS service.

TYPE: str

allowed_models

List of models supported by the TTS service.

TYPE: List[str]

allowed_voices

List of available voices.

TYPE: List[str]

name

The default model name used for TTS.

TYPE: str

type

The type of TTS model.

TYPE: Literal

voice

The default voice setting for TTS synthesis.

TYPE: str

Provider Resource: https://platform.openai.com/docs/guides/text-to-speech/overview

Initialize the OpenaiTTS class with the provided data.

PARAMETER DESCRIPTION
**data

Arbitrary keyword arguments containing initialization data.

TYPE: Dict[str, Any] DEFAULT: {}

Source code in swarmauri_standard/tts/OpenaiTTS.py
42
43
44
45
46
47
48
49
50
51
52
53
def __init__(self, **data: Dict[str, Any]):
    """
    Initialize the OpenaiTTS class with the provided data.

    Args:
        **data (Dict[str, Any]): Arbitrary keyword arguments containing initialization data.
    """
    super().__init__(**data)
    self._headers = {
        "Authorization": f"Bearer {self.api_key.get_secret_value()}",
        "Content-Type": "application/json",
    }

api_key instance-attribute

api_key

allowed_models class-attribute instance-attribute

allowed_models = ['tts-1', 'tts-1-hd', 'gpt-4o-mini-tts']

allowed_voices class-attribute instance-attribute

allowed_voices = [
    "alloy",
    "echo",
    "fable",
    "onyx",
    "nova",
    "shimmer",
]

name class-attribute instance-attribute

name = 'tts-1'

type class-attribute instance-attribute

type = 'OpenaiTTS'

voice class-attribute instance-attribute

voice = 'alloy'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="forbid", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

resource class-attribute instance-attribute

resource = Field(default=TTS.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

predict

predict(text, audio_path='output.mp3')

Synchronously converts text to speech using httpx.

PARAMETER DESCRIPTION
text

The text to convert to speech.

TYPE: str

audio_path

Path to save the synthesized audio.

TYPE: str DEFAULT: 'output.mp3'

Returns: str: Absolute path to the saved audio file.

Source code in swarmauri_standard/tts/OpenaiTTS.py
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
@retry_on_status_codes((429, 529), max_retries=1)
def predict(self, text: str, audio_path: str = "output.mp3") -> str:
    """
    Synchronously converts text to speech using httpx.

    Parameters:
        text (str): The text to convert to speech.
        audio_path (str): Path to save the synthesized audio.
    Returns:
        str: Absolute path to the saved audio file.
    """
    payload = {"model": self.name, "voice": self.voice, "input": text}

    with httpx.Client(timeout=30) as client:
        response = client.post(self._BASE_URL, headers=self._headers, json=payload)
        response.raise_for_status()

        with open(audio_path, "wb") as audio_file:
            audio_file.write(response.content)
        return os.path.abspath(audio_path)

apredict async

apredict(text, audio_path='output.mp3')

Asynchronously converts text to speech using httpx.

PARAMETER DESCRIPTION
text

The text to convert to speech.

TYPE: str

audio_path

Path to save the synthesized audio.

TYPE: str DEFAULT: 'output.mp3'

Returns: str: Absolute path to the saved audio file.

Source code in swarmauri_standard/tts/OpenaiTTS.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
async def apredict(self, text: str, audio_path: str = "output.mp3") -> str:
    """
    Asynchronously converts text to speech using httpx.

    Parameters:
        text (str): The text to convert to speech.
        audio_path (str): Path to save the synthesized audio.
    Returns:
        str: Absolute path to the saved audio file.
    """
    payload = {"model": self.name, "voice": self.voice, "input": text}

    async with httpx.AsyncClient(timeout=30) as client:
        response = await client.post(
            self._BASE_URL, headers=self._headers, json=payload
        )

        response.raise_for_status()
        with open(audio_path, "wb") as audio_file:
            audio_file.write(response.content)
        return os.path.abspath(audio_path)

stream

stream(text)

Synchronously streams TTS audio using httpx.

PARAMETER DESCRIPTION
text

The text to convert to speech.

TYPE: str

Returns: bytes: bytes of the audio.

Source code in swarmauri_standard/tts/OpenaiTTS.py
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
@retry_on_status_codes((429, 529), max_retries=1)
def stream(self, text: str) -> Iterator[bytes]:
    """
    Synchronously streams TTS audio using httpx.

    Parameters:
        text (str): The text to convert to speech.
    Returns:
        bytes: bytes of the audio.
    """
    payload = {
        "model": self.name,
        "voice": self.voice,
        "input": text,
        "stream": True,
    }

    try:
        with httpx.Client(timeout=30) as client:
            response = client.post(
                self._BASE_URL, headers=self._headers, json=payload
            )
            response.raise_for_status()

        audio_bytes = io.BytesIO()
        for chunk in response.iter_bytes():
            if chunk:
                yield chunk
                audio_bytes.write(chunk)
    except httpx.HTTPStatusError as e:
        raise RuntimeError(f"Text-to-Speech streaming failed: {e}")

astream async

astream(text)

Asynchronously streams TTS audio using httpx.

PARAMETER DESCRIPTION
text

The text to convert to speech.

TYPE: str

Returns: io.BytesIO: bytes of the audio.

Source code in swarmauri_standard/tts/OpenaiTTS.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
@retry_on_status_codes((429, 529), max_retries=1)
async def astream(self, text: str) -> AsyncIterator[bytes]:
    """
    Asynchronously streams TTS audio using httpx.

    Parameters:
        text (str): The text to convert to speech.
    Returns:
        io.BytesIO: bytes of the audio.
    """
    payload = {
        "model": self.name,
        "voice": self.voice,
        "input": text,
        "stream": True,
    }

    try:
        async with httpx.AsyncClient(timeout=30) as client:
            response = await client.post(
                self._BASE_URL, headers=self._headers, json=payload
            )
            response.raise_for_status()
            audio_bytes = io.BytesIO()

            async for chunk in response.aiter_bytes():
                if chunk:
                    yield chunk
                    audio_bytes.write(chunk)
    except httpx.HTTPStatusError as e:
        raise RuntimeError(f"Text-to-Speech streaming failed: {e}")

batch

batch(text_path_dict)

Synchronously process multiple text-to-speech requests in batch mode.

PARAMETER DESCRIPTION
text_path_dict

Dictionary mapping text to output paths.

TYPE: Dict[str, str]

RETURNS DESCRIPTION
List[str]

List[str]: List of paths to the saved audio files.

Source code in swarmauri_standard/tts/OpenaiTTS.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def batch(
    self,
    text_path_dict: Dict[str, str],
) -> List[str]:
    """
    Synchronously process multiple text-to-speech requests in batch mode.

    Args:
        text_path_dict (Dict[str, str]): Dictionary mapping text to output paths.

    Returns:
        List[str]: List of paths to the saved audio files.
    """
    return [
        self.predict(text=text, audio_path=path)
        for text, path in text_path_dict.items()
    ]

abatch async

abatch(text_path_dict, max_concurrent=5)

Asynchronously process multiple text-to-speech requests in batch mode with controlled concurrency.

PARAMETER DESCRIPTION
text_path_dict

Dictionary mapping text to output paths.

TYPE: Dict[str, str]

max_concurrent

Maximum number of concurrent requests.

TYPE: int DEFAULT: 5

RETURNS DESCRIPTION
List[str]

List[str]: List of paths to the saved audio files.

Source code in swarmauri_standard/tts/OpenaiTTS.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
async def abatch(
    self,
    text_path_dict: Dict[str, str],
    max_concurrent=5,  # New parameter to control concurrency
) -> List[str]:
    """
    Asynchronously process multiple text-to-speech requests in batch mode
    with controlled concurrency.

    Args:
        text_path_dict (Dict[str, str]): Dictionary mapping text to output paths.
        max_concurrent (int): Maximum number of concurrent requests.

    Returns:
        List[str]: List of paths to the saved audio files.
    """
    semaphore = asyncio.Semaphore(max_concurrent)

    async def process_conversation(text, path) -> str:
        async with semaphore:
            return await self.apredict(text=text, audio_path=path)

    tasks = [
        process_conversation(text, path) for text, path in text_path_dict.items()
    ]
    return await asyncio.gather(*tasks)

get_allowed_models

get_allowed_models()

Queries the LLMProvider API endpoint to retrieve the list of allowed models.

RETURNS DESCRIPTION
List[str]

List[str]: List of allowed model names.

Source code in swarmauri_standard/tts/OpenaiTTS.py
230
231
232
233
234
235
236
237
238
def get_allowed_models(self) -> List[str]:
    """
    Queries the LLMProvider API endpoint to retrieve the list of allowed models.

    Returns:
        List[str]: List of allowed model names.
    """
    models_data = ["tts-1", "tts-1-hd"]
    return models_data

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

add_allowed_model

add_allowed_model(model)

Add a new model to the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is already in the allowed models list.

Source code in swarmauri_base/tts/TTSBase.py
27
28
29
30
31
32
33
34
35
36
def add_allowed_model(self, model: str) -> None:
    """
    Add a new model to the list of allowed models.

    Raises:
        ValueError: If the model is already in the allowed models list.
    """
    if model in self.allowed_models:
        raise ValueError(f"Model '{model}' is already allowed.")
    self.allowed_models.append(model)

remove_allowed_model

remove_allowed_model(model)

Remove a model from the list of allowed models.

RAISES DESCRIPTION
ValueError

If the model is not in the allowed models list.

Source code in swarmauri_base/tts/TTSBase.py
38
39
40
41
42
43
44
45
46
47
def remove_allowed_model(self, model: str) -> None:
    """
    Remove a model from the list of allowed models.

    Raises:
        ValueError: If the model is not in the allowed models list.
    """
    if model not in self.allowed_models:
        raise ValueError(f"Model '{model}' is not in the allowed models list.")
    self.allowed_models.remove(model)