Class swarmauri_embedding_nmf.NmfEmbedding.NmfEmbedding
swarmauri_embedding_nmf.NmfEmbedding.NmfEmbedding
NmfEmbedding(**kwargs)
Bases: EmbeddingBase
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
21 22 23 24 25 26 |
|
n_components
class-attribute
instance-attribute
n_components = 10
feature_names
class-attribute
instance-attribute
feature_names = []
type
class-attribute
instance-attribute
type = 'NmfEmbedding'
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
fit
fit(data)
Fit the NMF model to data.
PARAMETER | DESCRIPTION |
---|---|
data
|
The text data to fit.
TYPE:
|
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
transform
transform(data)
Transform new data into NMF feature space.
PARAMETER | DESCRIPTION |
---|---|
data
|
Text data to transform.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[IVector]: A list of vectors representing the transformed data. |
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
fit_transform
fit_transform(data)
Fit the model to data and then transform it.
PARAMETER | DESCRIPTION |
---|---|
data
|
The text data to fit and transform.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[IVector]: A list of vectors representing the fitted and transformed data. |
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
60 61 62 63 64 65 66 67 68 69 70 71 |
|
infer_vector
infer_vector(data)
Convenience method for transforming a single data point.
PARAMETER | DESCRIPTION |
---|---|
data
|
Single text data to transform.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
IVector
|
A vector representing the transformed single data point. |
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
73 74 75 76 77 78 79 80 81 82 83 |
|
extract_features
extract_features()
Extract the feature names from the TF-IDF vectorizer.
RETURNS | DESCRIPTION |
---|---|
The feature names. |
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
85 86 87 88 89 90 91 92 |
|
save_model
save_model(path)
Saves the NMF model and TF-IDF vectorizer using joblib.
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
94 95 96 97 98 99 100 101 |
|
load_model
load_model(path)
Loads the NMF model and TF-IDF vectorizer from paths using joblib.
Source code in swarmauri_embedding_nmf/NmfEmbedding.py
103 104 105 106 107 108 109 110 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|