Skip to content

Class swarmauri_embedding_nmf.NmfEmbedding.NmfEmbedding

swarmauri_embedding_nmf.NmfEmbedding.NmfEmbedding

NmfEmbedding(**kwargs)

Bases: EmbeddingBase

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
21
22
23
24
25
26
def __init__(self, **kwargs):
    super().__init__(**kwargs)
    # Initialize TF-IDF Vectorizer
    self._tfidf_vectorizer = TfidfVectorizer()
    # Initialize NMF with the desired number of components
    self._model = NMF(n_components=self.n_components)

n_components class-attribute instance-attribute

n_components = 10

feature_names class-attribute instance-attribute

feature_names = []

type class-attribute instance-attribute

type = 'NmfEmbedding'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=EMBEDDING.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

fit

fit(data)

Fit the NMF model to data.

PARAMETER DESCRIPTION
data

The text data to fit.

TYPE: Union[str, Any]

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
28
29
30
31
32
33
34
35
36
37
38
39
40
def fit(self, data):
    """
    Fit the NMF model to data.

    Args:
        data (Union[str, Any]): The text data to fit.
    """
    # Transform data into TF-IDF matrix
    tfidf_matrix = self._tfidf_vectorizer.fit_transform(data)
    # Fit the NMF model
    self._model.fit(tfidf_matrix)
    # Store feature names
    self.feature_names = self._tfidf_vectorizer.get_feature_names_out()

transform

transform(data)

Transform new data into NMF feature space.

PARAMETER DESCRIPTION
data

Text data to transform.

TYPE: Union[str, Any]

RETURNS DESCRIPTION

List[IVector]: A list of vectors representing the transformed data.

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def transform(self, data):
    """
    Transform new data into NMF feature space.

    Args:
        data (Union[str, Any]): Text data to transform.

    Returns:
        List[IVector]: A list of vectors representing the transformed data.
    """
    # Transform data into TF-IDF matrix
    tfidf_matrix = self._tfidf_vectorizer.transform(data)
    # Transform TF-IDF matrix into NMF space
    nmf_features = self._model.transform(tfidf_matrix)

    # Wrap NMF features in SimpleVector instances and return
    return [Vector(value=features.tolist()) for features in nmf_features]

fit_transform

fit_transform(data)

Fit the model to data and then transform it.

PARAMETER DESCRIPTION
data

The text data to fit and transform.

TYPE: Union[str, Any]

RETURNS DESCRIPTION

List[IVector]: A list of vectors representing the fitted and transformed data.

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
60
61
62
63
64
65
66
67
68
69
70
71
def fit_transform(self, data):
    """
    Fit the model to data and then transform it.

    Args:
        data (Union[str, Any]): The text data to fit and transform.

    Returns:
        List[IVector]: A list of vectors representing the fitted and transformed data.
    """
    self.fit(data)
    return self.transform(data)

infer_vector

infer_vector(data)

Convenience method for transforming a single data point.

PARAMETER DESCRIPTION
data

Single text data to transform.

TYPE: Union[str, Any]

RETURNS DESCRIPTION
IVector

A vector representing the transformed single data point.

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
73
74
75
76
77
78
79
80
81
82
83
def infer_vector(self, data):
    """
    Convenience method for transforming a single data point.

    Args:
        data (Union[str, Any]): Single text data to transform.

    Returns:
        IVector: A vector representing the transformed single data point.
    """
    return self.transform([data])[0]

extract_features

extract_features()

Extract the feature names from the TF-IDF vectorizer.

RETURNS DESCRIPTION

The feature names.

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
85
86
87
88
89
90
91
92
def extract_features(self):
    """
    Extract the feature names from the TF-IDF vectorizer.

    Returns:
        The feature names.
    """
    return self.feature_names.tolist()

save_model

save_model(path)

Saves the NMF model and TF-IDF vectorizer using joblib.

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
 94
 95
 96
 97
 98
 99
100
101
def save_model(self, path: str) -> None:
    """
    Saves the NMF model and TF-IDF vectorizer using joblib.
    """
    # It might be necessary to save both tfidf_vectorizer and model
    # Consider using a directory for 'path' or appended identifiers for each model file
    joblib.dump(self._tfidf_vectorizer, f"{path}_tfidf.joblib")
    joblib.dump(self._model, f"{path}_nmf.joblib")

load_model

load_model(path)

Loads the NMF model and TF-IDF vectorizer from paths using joblib.

Source code in swarmauri_embedding_nmf/NmfEmbedding.py
103
104
105
106
107
108
109
110
def load_model(self, path: str) -> None:
    """
    Loads the NMF model and TF-IDF vectorizer from paths using joblib.
    """
    self._tfidf_vectorizer = joblib.load(f"{path}_tfidf.joblib")
    self._model = joblib.load(f"{path}_nmf.joblib")
    # Dependending on your implementation, you might need to refresh the feature_names
    self.feature_names = self._tfidf_vectorizer.get_feature_names_out()

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger