Class swarmauri_evaluator_abstractmethods.AbstractMethodsEvaluator.AbstractMethodsEvaluator
swarmauri_evaluator_abstractmethods.AbstractMethodsEvaluator.AbstractMethodsEvaluator
Bases: EvaluatorBase
, ComponentBase
Evaluator that verifies all methods in abstract base classes are properly marked as abstract.
This evaluator parses Python source code to identify classes that inherit from ABC (Abstract Base Class) and verifies that all methods defined in these classes are decorated with @abstractmethod. It helps enforce proper interface design by ensuring that abstract classes properly declare their contract.
type
class-attribute
instance-attribute
type = 'AbstractMethodsEvaluator'
ignore_private
class-attribute
instance-attribute
ignore_private = Field(
default=True,
description="Whether to ignore private methods (starting with _)",
)
ignore_dunder
class-attribute
instance-attribute
ignore_dunder = Field(
default=True,
description="Whether to ignore dunder methods (starting and ending with __)",
)
abc_base_classes
class-attribute
instance-attribute
abc_base_classes = Field(
default=["ABC", "abc.ABC"],
description="List of base class names that indicate an abstract class",
)
model_config
class-attribute
instance-attribute
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True
)
id
class-attribute
instance-attribute
id = Field(default_factory=generate_id)
members
class-attribute
instance-attribute
members = None
owners
class-attribute
instance-attribute
owners = None
host
class-attribute
instance-attribute
host = None
default_logger
class-attribute
default_logger = None
logger
class-attribute
instance-attribute
logger = None
name
class-attribute
instance-attribute
name = None
version
class-attribute
instance-attribute
version = '0.1.0'
aggregate_scores
aggregate_scores(scores, metadata_list)
Aggregates multiple evaluation scores and their metadata.
Combines scores from multiple evaluations and aggregates their metadata to provide a comprehensive overview of abstract method compliance.
PARAMETER | DESCRIPTION |
---|---|
scores
|
List of individual scores to aggregate
TYPE:
|
metadata_list
|
List of metadata dictionaries corresponding to each score
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[float, Dict[str, Any]]
|
A tuple containing: - float: The aggregated score (average) - Dict[str, Any]: Aggregated metadata |
Source code in swarmauri_evaluator_abstractmethods/AbstractMethodsEvaluator.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
register_model
classmethod
register_model()
Decorator to register a base model in the unified registry.
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the model class.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
register_type
classmethod
register_type(resource_type=None, type_name=None)
Decorator to register a subtype under one or more base models in the unified registry.
PARAMETER | DESCRIPTION |
---|---|
resource_type
|
The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.
TYPE:
|
type_name
|
An optional custom type name for the subtype.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Callable
|
A decorator function that registers the subtype.
TYPE:
|
Source code in swarmauri_base/DynamicBase.py
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
model_validate_toml
classmethod
model_validate_toml(toml_data)
Validate a model from a TOML string.
Source code in swarmauri_base/TomlMixin.py
12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
model_dump_toml
model_dump_toml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a TOML representation of the model.
Source code in swarmauri_base/TomlMixin.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
model_validate_yaml
classmethod
model_validate_yaml(yaml_data)
Validate a model from a YAML string.
Source code in swarmauri_base/YamlMixin.py
11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
model_dump_yaml
model_dump_yaml(
fields_to_exclude=None, api_key_placeholder=None
)
Return a YAML representation of the model.
Source code in swarmauri_base/YamlMixin.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
model_post_init
model_post_init(logger=None)
Assign a logger instance after model initialization.
Source code in swarmauri_base/LoggerMixin.py
23 24 25 26 27 28 |
|
evaluate
evaluate(program, **kwargs)
Evaluate a program and return a fitness score with metadata.
This method wraps the concrete _compute_score implementation, capturing execution time and handling exceptions.
PARAMETER | DESCRIPTION |
---|---|
program
|
The program to evaluate
TYPE:
|
**kwargs
|
Additional parameters for the evaluation process
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[float, Dict[str, Any]]
|
A tuple containing: - float: A scalar fitness score (higher is better) - Dict[str, Any]: Metadata about the evaluation, including feature dimensions |
RAISES | DESCRIPTION |
---|---|
EvaluationError
|
If the evaluation process fails |
TypeError
|
If the program is not of the expected type |
Source code in swarmauri_base/evaluators/EvaluatorBase.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
reset
reset()
Reset the evaluator to its initial state.
This method is called to clear any internal state or cached data before a new evaluation cycle begins.
Source code in swarmauri_base/evaluators/EvaluatorBase.py
139 140 141 142 143 144 145 146 147 148 |
|