Skip to content

Class swarmauri_middleware_ratelimit.RateLimitMiddleware.RateLimitMiddleware

swarmauri_middleware_ratelimit.RateLimitMiddleware.RateLimitMiddleware

RateLimitMiddleware(
    rate_limit=100,
    time_window=60,
    use_token=False,
    token_header="X-Api-Key",
    **kwargs,
)

Bases: MiddlewareBase, ComponentBase

Enforce per-client request limits.

The middleware counts requests from each client IP or token within a configurable time window. Requests beyond the configured limit are blocked with an HTTP 429 response.

Attributes

type : Literal["RateLimitMiddleware"] Unique middleware type identifier. rate_limit : int, optional Maximum number of requests allowed within the time window. Defaults to 100. time_window : int, optional Time window in seconds during which the rate limit applies. Defaults to 60 seconds. use_token : bool, optional If True, use a token from token_header instead of the client IP to identify callers. Defaults to False. token_header : str, optional Header name used to extract the token when use_token is True. Defaults to "X-Api-Key".

Source code in swarmauri_middleware_ratelimit/RateLimitMiddleware.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def __init__(
    self,
    rate_limit: int = 100,
    time_window: int = 60,
    use_token: bool = False,
    token_header: str = "X-Api-Key",
    **kwargs,
):
    super().__init__(**kwargs)
    self.rate_limit = rate_limit
    self.time_window = time_window
    self.use_token = use_token
    self.token_header = token_header
    self._ip_limits = {}

type class-attribute instance-attribute

type = 'RateLimitMiddleware'

rate_limit class-attribute instance-attribute

rate_limit = rate_limit

time_window class-attribute instance-attribute

time_window = time_window

use_token class-attribute instance-attribute

use_token = use_token

token_header class-attribute instance-attribute

token_header = token_header

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = MIDDLEWARE.value

version class-attribute instance-attribute

version = '0.1.0'

app property

app

dispatch async

dispatch(request, call_next)

Process the request while applying rate limits.

Parameters

request : Request Incoming request object. call_next : Callable[[Request], Any] Callable that invokes the next middleware in the chain.

Returns

Any Response object after processing the request.

Raises

HTTPException If the client has exceeded the rate limit.

Source code in swarmauri_middleware_ratelimit/RateLimitMiddleware.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
async def dispatch(
    self, request: Request, call_next: Callable[[Request], Any]
) -> Any:
    """Process the request while applying rate limits.

    Parameters
    ----------
    request : Request
        Incoming request object.
    call_next : Callable[[Request], Any]
        Callable that invokes the next middleware in the chain.

    Returns
    -------
    Any
        Response object after processing the request.

    Raises
    ------
    HTTPException
        If the client has exceeded the rate limit.
    """

    # Get client identifier (IP or token)
    client_identifier = await self._get_client_identifier(request)

    # Get current timestamp
    current_time = time.time()

    # Initialize or update the client's request count
    if client_identifier not in self._ip_limits:
        self._ip_limits[client_identifier] = {
            "count": 1,
            "last_reset": current_time,
        }
    else:
        client_data = self._ip_limits[client_identifier]
        # Check if we need to reset the count (time window exceeded)
        if current_time - client_data["last_reset"] > self.time_window:
            client_data["count"] = 1
            client_data["last_reset"] = current_time
        else:
            client_data["count"] += 1

    # Check if the rate limit has been exceeded
    if self._ip_limits[client_identifier]["count"] > self.rate_limit:
        logger.warning(f"Rate limit exceeded for client {client_identifier}")
        return Response(status_code=429, content="Rate limit exceeded")

    # Proceed with the request chain
    return await call_next(request)

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger

on_scope async

on_scope(scope)

Hook executed when the middleware receives a scope.

Source code in swarmauri_base/middlewares/MiddlewareBase.py
52
53
54
55
async def on_scope(self, scope: Scope) -> Scope:
    """Hook executed when the middleware receives a scope."""

    return scope

on_receive async

on_receive(scope, message)

Hook executed for every message received from the client.

Source code in swarmauri_base/middlewares/MiddlewareBase.py
57
58
59
60
async def on_receive(self, scope: Scope, message: Message) -> Message:
    """Hook executed for every message received from the client."""

    return message

on_send async

on_send(scope, message)

Hook executed before messages are sent to the client.

Source code in swarmauri_base/middlewares/MiddlewareBase.py
62
63
64
65
async def on_send(self, scope: Scope, message: Message) -> Message:
    """Hook executed before messages are sent to the client."""

    return message

bind

bind(app)

Bind the downstream ASGI application to the middleware.

Source code in swarmauri_base/middlewares/MiddlewareBase.py
36
37
38
39
def bind(self, app: ASGIApp) -> None:
    """Bind the downstream ASGI application to the middleware."""

    self._app = app

call_next async

call_next(scope, receive, send)

Invoke the next ASGI application in the chain.

Source code in swarmauri_base/middlewares/MiddlewareBase.py
45
46
47
48
49
50
async def call_next(
    self, scope: Scope, receive: ReceiveCallable, send: SendCallable
) -> None:
    """Invoke the next ASGI application in the chain."""

    await self.app(scope, receive, send)