Skip to content

Class swarmauri_signing_openpgp.openpgp_signer.OpenPGPSigner

swarmauri_signing_openpgp.openpgp_signer.OpenPGPSigner

OpenPGPSigner(key_provider=None)

Bases: SigningBase

Produce detached OpenPGP signatures for bytes, digests and structured envelopes.

Source code in swarmauri_signing_openpgp/openpgp_signer.py
184
185
186
187
188
def __init__(
    self,
    key_provider: Optional[IKeyProvider] = None,
) -> None:
    self._key_provider = key_provider

type class-attribute instance-attribute

type = 'SigningBase'

model_config class-attribute instance-attribute

model_config = ConfigDict(
    extra="allow", arbitrary_types_allowed=True
)

id class-attribute instance-attribute

id = Field(default_factory=generate_id)

members class-attribute instance-attribute

members = None

owners class-attribute instance-attribute

owners = None

host class-attribute instance-attribute

host = None

default_logger class-attribute

default_logger = None

logger class-attribute instance-attribute

logger = None

name class-attribute instance-attribute

name = None

resource class-attribute instance-attribute

resource = Field(default=CRYPTO.value, frozen=True)

version class-attribute instance-attribute

version = '0.1.0'

set_key_provider

set_key_provider(provider)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
190
191
def set_key_provider(self, provider: IKeyProvider) -> None:
    self._key_provider = provider

supports

supports(key_ref=None)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
194
195
196
197
198
199
200
201
202
203
204
205
206
def supports(self, key_ref: Optional[str] = None) -> Mapping[str, Iterable[str]]:
    base_caps: Mapping[str, Iterable[str]] = {
        "signs": ("bytes", "digest", "envelope", "stream"),
        "verifies": ("bytes", "digest", "envelope", "stream"),
        "envelopes": ("structured-json", "detached-bytes"),
        "algs": tuple(hash_alg.name for hash_alg in HashAlgorithm),
        "canons": ("json",),
        "features": ("detached", "armored"),
        "status": ("beta",),
    }
    if key_ref is None:
        return base_caps
    return {**base_caps, "key_refs": (key_ref,)}

sign_bytes async

sign_bytes(key, payload, *, alg=None, opts=None)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
async def sign_bytes(
    self,
    key: KeyRef,
    payload: bytes,
    *,
    alg: Optional[Alg] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> Sequence[Signature]:
    return await self._sign_payload(
        key,
        payload,
        alg=alg,
        opts=opts,
        payload_kind="bytes",
    )

sign_digest async

sign_digest(key, digest, *, alg=None, opts=None)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
async def sign_digest(
    self,
    key: KeyRef,
    digest: bytes,
    *,
    alg: Optional[Alg] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> Sequence[Signature]:
    return await self._sign_payload(
        key,
        digest,
        alg=alg,
        opts=opts,
        payload_kind="digest",
    )

sign_stream async

sign_stream(key, payload, *, alg=None, opts=None)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
async def sign_stream(
    self,
    key: KeyRef,
    payload: StreamLike,
    *,
    alg: Optional[Alg] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> Sequence[Signature]:
    data = await _stream_to_bytes(payload)
    return await self._sign_payload(
        key,
        data,
        alg=alg,
        opts=opts,
        payload_kind="stream",
    )

sign_envelope async

sign_envelope(key, env, *, alg=None, canon=None, opts=None)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
async def sign_envelope(
    self,
    key: KeyRef,
    env: Envelope,
    *,
    alg: Optional[Alg] = None,
    canon: Optional[Canon] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> Sequence[Signature]:
    canonical = await self.canonicalize_envelope(env, canon=canon, opts=opts)
    return await self._sign_payload(
        key,
        canonical,
        alg=alg,
        opts=opts,
        payload_kind="envelope",
    )

verify_bytes async

verify_bytes(
    payload, signatures, *, require=None, opts=None
)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
async def verify_bytes(
    self,
    payload: bytes,
    signatures: Sequence[Signature],
    *,
    require: Optional[Mapping[str, object]] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> bool:
    return await self._verify_payload(
        payload,
        signatures,
        require=require,
        opts=opts,
        payload_kind="bytes",
    )

verify_digest async

verify_digest(
    digest, signatures, *, require=None, opts=None
)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
async def verify_digest(
    self,
    digest: bytes,
    signatures: Sequence[Signature],
    *,
    require: Optional[Mapping[str, object]] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> bool:
    return await self._verify_payload(
        digest,
        signatures,
        require=require,
        opts=opts,
        payload_kind="digest",
    )

verify_stream async

verify_stream(
    payload, signatures, *, require=None, opts=None
)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
async def verify_stream(
    self,
    payload: StreamLike,
    signatures: Sequence[Signature],
    *,
    require: Optional[Mapping[str, object]] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> bool:
    data = await _stream_to_bytes(payload)
    return await self._verify_payload(
        data,
        signatures,
        require=require,
        opts=opts,
        payload_kind="stream",
    )

verify_envelope async

verify_envelope(
    env, signatures, *, canon=None, require=None, opts=None
)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
async def verify_envelope(
    self,
    env: Envelope,
    signatures: Sequence[Signature],
    *,
    canon: Optional[Canon] = None,
    require: Optional[Mapping[str, object]] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> bool:
    canonical = await self.canonicalize_envelope(env, canon=canon, opts=opts)
    return await self._verify_payload(
        canonical,
        signatures,
        require=require,
        opts=opts,
        payload_kind="envelope",
    )

canonicalize_envelope async

canonicalize_envelope(env, *, canon=None, opts=None)
Source code in swarmauri_signing_openpgp/openpgp_signer.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
async def canonicalize_envelope(
    self,
    env: Envelope,
    *,
    canon: Optional[Canon] = None,
    opts: Optional[Mapping[str, object]] = None,
) -> bytes:
    if canon in (None, "json"):
        return _canon_json(env)
    if canon == "raw":
        if isinstance(env, (bytes, bytearray)):
            return bytes(env)
        raise TypeError("raw canon expects bytes envelope")
    raise ValueError(f"Unsupported canon for OpenPGPSigner: {canon}")

register_model classmethod

register_model()

Decorator to register a base model in the unified registry.

RETURNS DESCRIPTION
Callable

A decorator function that registers the model class.

TYPE: Callable[[Type[BaseModel]], Type[BaseModel]]

Source code in swarmauri_base/DynamicBase.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def register_model(cls) -> Callable[[Type[BaseModel]], Type[BaseModel]]:
    """
    Decorator to register a base model in the unified registry.

    Returns:
        Callable: A decorator function that registers the model class.
    """

    def decorator(model_cls: Type[BaseModel]):
        """Register ``model_cls`` as a base model."""
        model_name = model_cls.__name__
        if model_name in cls._registry:
            glogger.warning(
                "Model '%s' is already registered; skipping duplicate.", model_name
            )
            return model_cls

        cls._registry[model_name] = {"model_cls": model_cls, "subtypes": {}}
        glogger.debug("Registered base model '%s'.", model_name)
        DynamicBase._recreate_models()
        return model_cls

    return decorator

register_type classmethod

register_type(resource_type=None, type_name=None)

Decorator to register a subtype under one or more base models in the unified registry.

PARAMETER DESCRIPTION
resource_type

The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase) are used.

TYPE: Optional[Union[Type[T], List[Type[T]]]] DEFAULT: None

type_name

An optional custom type name for the subtype.

TYPE: Optional[str] DEFAULT: None

RETURNS DESCRIPTION
Callable

A decorator function that registers the subtype.

TYPE: Callable[[Type[DynamicBase]], Type[DynamicBase]]

Source code in swarmauri_base/DynamicBase.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@classmethod
def register_type(
    cls,
    resource_type: Optional[Union[Type[T], List[Type[T]]]] = None,
    type_name: Optional[str] = None,
) -> Callable[[Type["DynamicBase"]], Type["DynamicBase"]]:
    """
    Decorator to register a subtype under one or more base models in the unified registry.

    Parameters:
        resource_type (Optional[Union[Type[T], List[Type[T]]]]):
            The base model(s) under which to register the subtype. If None, all direct base classes (except DynamicBase)
            are used.
        type_name (Optional[str]): An optional custom type name for the subtype.

    Returns:
        Callable: A decorator function that registers the subtype.
    """

    def decorator(subclass: Type["DynamicBase"]):
        """Register ``subclass`` as a subtype."""
        if resource_type is None:
            resource_types = [
                base for base in subclass.__bases__ if base is not cls
            ]
        elif not isinstance(resource_type, list):
            resource_types = [resource_type]
        else:
            resource_types = resource_type

        for rt in resource_types:
            if not issubclass(subclass, rt):
                raise TypeError(
                    f"'{subclass.__name__}' must be a subclass of '{rt.__name__}'."
                )
            final_type_name = type_name or getattr(
                subclass, "_type", subclass.__name__
            )
            base_model_name = rt.__name__

            if base_model_name not in cls._registry:
                cls._registry[base_model_name] = {"model_cls": rt, "subtypes": {}}
                glogger.debug(
                    "Created new registry entry for base model '%s'.",
                    base_model_name,
                )

            subtypes_dict = cls._registry[base_model_name]["subtypes"]
            if final_type_name in subtypes_dict:
                glogger.warning(
                    "Type '%s' already exists under '%s'; skipping duplicate.",
                    final_type_name,
                    base_model_name,
                )
                continue

            subtypes_dict[final_type_name] = subclass
            glogger.debug(
                "Registered '%s' as '%s' under '%s'.",
                subclass.__name__,
                final_type_name,
                base_model_name,
            )

        DynamicBase._recreate_models()
        return subclass

    return decorator

model_validate_toml classmethod

model_validate_toml(toml_data)

Validate a model from a TOML string.

Source code in swarmauri_base/TomlMixin.py
12
13
14
15
16
17
18
19
20
21
22
23
24
@classmethod
def model_validate_toml(cls, toml_data: str):
    """Validate a model from a TOML string."""
    try:
        # Parse TOML into a Python dictionary
        toml_content = tomllib.loads(toml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(toml_content))
    except tomllib.TOMLDecodeError as e:
        raise ValueError(f"Invalid TOML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_toml

model_dump_toml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a TOML representation of the model.

Source code in swarmauri_base/TomlMixin.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def model_dump_toml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a TOML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into TOML
    return toml.dumps(filtered_data)

model_validate_yaml classmethod

model_validate_yaml(yaml_data)

Validate a model from a YAML string.

Source code in swarmauri_base/YamlMixin.py
11
12
13
14
15
16
17
18
19
20
21
22
23
@classmethod
def model_validate_yaml(cls, yaml_data: str):
    """Validate a model from a YAML string."""
    try:
        # Parse YAML into a Python dictionary
        yaml_content = yaml.safe_load(yaml_data)

        # Convert the dictionary to JSON and validate using Pydantic
        return cls.model_validate_json(json.dumps(yaml_content))
    except yaml.YAMLError as e:
        raise ValueError(f"Invalid YAML data: {e}")
    except ValidationError as e:
        raise ValueError(f"Validation failed: {e}")

model_dump_yaml

model_dump_yaml(
    fields_to_exclude=None, api_key_placeholder=None
)

Return a YAML representation of the model.

Source code in swarmauri_base/YamlMixin.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def model_dump_yaml(self, fields_to_exclude=None, api_key_placeholder=None):
    """Return a YAML representation of the model."""
    if fields_to_exclude is None:
        fields_to_exclude = []

    # Load the JSON string into a Python dictionary
    json_data = json.loads(self.model_dump_json())

    # Function to recursively remove specific keys and handle api_key placeholders
    def process_fields(data, fields_to_exclude):
        """Recursively filter fields and apply placeholders."""
        if isinstance(data, dict):
            return {
                key: (
                    api_key_placeholder
                    if key == "api_key" and api_key_placeholder is not None
                    else process_fields(value, fields_to_exclude)
                )
                for key, value in data.items()
                if key not in fields_to_exclude
            }
        elif isinstance(data, list):
            return [process_fields(item, fields_to_exclude) for item in data]
        else:
            return data

    # Filter the JSON data
    filtered_data = process_fields(json_data, fields_to_exclude)

    # Convert the filtered data into YAML using safe mode
    return yaml.safe_dump(filtered_data, default_flow_style=False)

model_post_init

model_post_init(logger=None)

Assign a logger instance after model initialization.

Source code in swarmauri_base/LoggerMixin.py
23
24
25
26
27
28
def model_post_init(self, logger: Optional[FullUnion[LoggerBase]] = None) -> None:
    """Assign a logger instance after model initialization."""

    # Directly assign the provided FullUnion[LoggerBase] or fallback to the
    # class-level default.
    self.logger = self.logger or logger or self.default_logger