swarmauri.standard.metrics.base.MetricThresholdMixin module
- class swarmauri.standard.metrics.base.MetricThresholdMixin.MetricThresholdMixin(**data)[source]
Bases:
IThreshold
,BaseModel
- classmethod construct(_fields_set=None, **values)
- Return type:
Self
- copy(*, include=None, exclude=None, update=None, deep=False)
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)
- Return type:
Dict
[str
,Any
]
- classmethod from_orm(obj)
- Return type:
Self
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)
- Return type:
str
-
k:
int
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
Optional
[set
[str
]]) – The set of field names accepted for the Model instance.values (
Any
) – Trusted or pre-validated data dictionary.
- Return type:
Self
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update=None, deep=False)
Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update (
Optional
[dict
[str
,Any
]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.deep (
bool
) – Set to True to make a deep copy of the model.
- Return type:
Self
- Returns:
New model instance.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)
Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union
[Literal
['json'
,'python'
],str
]) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union
[Set
[int
],Set
[str
],Dict
[int
,Any
],Dict
[str
,Any
],None
]) – A set of fields to include in the output.exclude (
Union
[Set
[int
],Set
[str
],Dict
[int
,Any
],Dict
[str
,Any
],None
]) – A set of fields to exclude from the output.context (
Optional
[Any
]) – Additional context to pass to the serializer.by_alias (
bool
) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool
) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool
) – Whether to exclude fields that are set to their default value.exclude_none (
bool
) – Whether to exclude fields that have a value of None.round_trip (
bool
) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union
[bool
,Literal
['none'
,'warn'
,'error'
]]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool
) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
dict
[str
,Any
]- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)
Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (
Optional
[int
]) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union
[Set
[int
],Set
[str
],Dict
[int
,Any
],Dict
[str
,Any
],None
]) – Field(s) to include in the JSON output.exclude (
Union
[Set
[int
],Set
[str
],Dict
[int
,Any
],Dict
[str
,Any
],None
]) – Field(s) to exclude from the JSON output.context (
Optional
[Any
]) – Additional context to pass to the serializer.by_alias (
bool
) – Whether to serialize using field aliases.exclude_unset (
bool
) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool
) – Whether to exclude fields that are set to their default value.exclude_none (
bool
) – Whether to exclude fields that have a value of None.round_trip (
bool
) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union
[bool
,Literal
['none'
,'warn'
,'error'
]]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool
) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
str
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'k': FieldInfo(annotation=int, required=True)}
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool
) – Whether to use attribute aliases or not.ref_template (
str
) – The reference template.schema_generator (
type
[GenerateJsonSchema
]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modificationsmode (
Literal
['validation'
,'serialization'
]) – The mode in which to generate the schema.
- Return type:
dict
[str
,Any
]- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple
[type
[Any
],...
]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.- Return type:
str
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool
) – Whether to force the rebuilding of the model schema, defaults to False.raise_errors (
bool
) – Whether to raise errors, defaults to True._parent_namespace_depth (
int
) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional
[dict
[str
,Any
]]) – The types namespace, defaults to None.
- Return type:
bool
|None
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)
Validate a pydantic model instance.
- Parameters:
obj (
Any
) – The object to validate.strict (
Optional
[bool
]) – Whether to enforce types strictly.from_attributes (
Optional
[bool
]) – Whether to extract data from object attributes.context (
Optional
[Any
]) – Additional context to pass to the validator.
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)
Usage docs: https://docs.pydantic.dev/2.8/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (
str
|bytes
|bytearray
) – The JSON data to validate.strict (
Optional
[bool
]) – Whether to enforce types strictly.context (
Optional
[Any
]) – Extra variables to pass to the validator.
- Return type:
Self
- Returns:
The validated Pydantic model.
- Raises:
ValueError – If json_data is not a JSON string.
- classmethod model_validate_strings(obj, *, strict=None, context=None)
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (
Any
) – The object containing string data to validate.strict (
Optional
[bool
]) – Whether to enforce types strictly.context (
Optional
[Any
]) – Extra variables to pass to the validator.
- Return type:
Self
- Returns:
The validated Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
- Return type:
Self
- classmethod parse_obj(obj)
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
- Return type:
Self
- classmethod schema(by_alias=True, ref_template='#/$defs/{model}')
- Return type:
Dict
[str
,Any
]
- classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)
- Return type:
str
- classmethod update_forward_refs(**localns)
- Return type:
None
- classmethod validate(value)
- Return type:
Self